Skip to main content
Log in

Parasitic apicomplexans harbor a chlorophyll a-D1 complex, the potential target for therapeutic triazines

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Ultrastructural evidence is presented for the presence of plastid-like organelles inToxoplasma gondii, Sarcocystis muris, Babesia ovis, andPlasmodium falciparum. In addition, it was shown that merozoites ofT. gondii contain protochlorophyllidaea and traces of chlorophylla bound to the photosynthetic reaction centers I PS I and PS II. ApsbA gene was isolated from merozoites ofS. muris by the polymerase chain reaction (PCR). Partial sequencing of the PCR product revealed that the herbicide-binding region is highly conserved. Therefore, it is likely that the sensitivity of apicomplexans to the herbicide toltrazuril depends on the interaction of the herbicide with the D1 protein of the photosynthetic reaction center of the parasite's organelles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barta JR, Jenkins MC, Danforth HD (1991) Evolutionary relationships of avianEimeria among other apicomplex protozoa-monophyly of the Apicomplexa is supported. Mol Biol Evol 8:345–355

    Google Scholar 

  • Bogorad L (1991a) An introduction to photosynthesis and the photosynthetic apparatus. In: Bogorad L, Vasil IK (eds) The photosynthetic apparatus: molecular biology and operation. Cell culture and somatic cell genetics of plants, vol 7B. Academic Press, San Diego, pp 3–23

    Google Scholar 

  • Bogorad L (1991b) Possibilities for intergenomic integration: regulatory cross-currents between the plastid and nuclear-cytoplasmic compartments. In: Bogorad L, Vasil IK (eds) The photosynthetic apparatus: molecular biology and operation. Cell culture and somatic cell genetics of plants, vol 7B. Academic Press, San Diego, pp 447–466

    Google Scholar 

  • Broers CAM, Molhuizen HOF, Stumm CK, Vogels GD (1992) An electromigration technique, applied for the concentration of anaerobic protozoa from mass cultures. J Microbiol Methods 14:217–220

    Google Scholar 

  • Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395

    Google Scholar 

  • Feagin JE, Gardner MJ, Williamson DH, Wilson RJM (1991) The putative mitochondrial genome ofPlasmodium falciparum. J Protozool 38:243–245

    Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Google Scholar 

  • Felsenstein J (1993) PHYLIP: phylogeny inference package, version 3.5c. Distributed by the author, Department of Genetics, University of Washington, Seattle, Washington

    Google Scholar 

  • Gardner MJ, Williamson DJ, Wilson RJ (1991) A circular DNA in malaria parasites encodes an RNA polymerase like that of prokaryotes and chloroplasts. Mol Biochem Parasitol 44:115–123

    Google Scholar 

  • Hackstein JHP, Schubert H, Rosenberg J, Berg M van den, Brul S, Derksen JWM, Matthijs HCP (1994) A novel photosynthetic organelle in anaerobic mastigotes. Endocytobiol Cell Res 10:261

    Google Scholar 

  • Hansmann P, Junker R, Sauter H, Sitte P (1987) Chromoplast development in daffodil coronae during anthesis. J Plant Physiol 131:133–143

    Google Scholar 

  • Harder A, Haberkorn A (1989) Possible mode of action of toltrazuril: studies on twoEimeria species and mammalian andAscaris suum enzymes. Parasitol Res 76:8–12

    Google Scholar 

  • Holmdahl OJM, Mattsson JG, Uggla A, Johanson K-E (1994) The phylogeny ofNeospora caninum andToxoplasma gondii based on ribosomal RNA sequences. FEMS Microbiol Lett 119:187–192

    Google Scholar 

  • Innis MA, Myambo KB, Gelfand DH, Brow MAD (1988) DNA sequencing withThermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA. Proc Natl Acad Sci USA 85:9436–9440

    Google Scholar 

  • Kepka O, Scholtyseck E (1970) Weitere Untersuchungen der Feinstruktur vonFrenkelia sp. (=M-Organismus, Sporozoa). Protistologica 6:249–266

    Google Scholar 

  • Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topology from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29:170–179

    Google Scholar 

  • Kobayashi H (1991) Differentiation of amyloplasts and chromoplasts. In: Bogorad L, Vasil IK (eds) The photosynthetic apparatus: molecular biology and operation. Cell culture and somatic cell genetics of plants, vol 7B. Academic Press, San Diego, pp 395–415

    Google Scholar 

  • Kowallik KV, Herrmann RG (1972) Do chromoplasts contain DNA? I. Electron microscopic investigation ofNarcissus chromoplasts. Protoplasma 74:1–6

    Google Scholar 

  • Kuntz M, Evrard J-L, d'Hartlingue A, Weil J-H, Camara B (1989) Expression of plastid and nuclear genes during chromoplast differentiation in bell pepper (Capsicum annuum) and sunflower (Helianthus annuus). Mol Gen Genet 216:156–163

    Google Scholar 

  • Link G (1991) Photoregulated development of chloroplasts. In: Bogorad L, Vasil IK (eds) The photosynthetic apparatus: molecular biology and operation. Cell culture and somatic cell genetics of plants, vol 7B. Academic Press, San Diego, pp 365–394

    Google Scholar 

  • Mantoura RFC, Llewellyn CA (1983) The rapid determination of algae chlorophyll and carotenoid pigment and their breakdown products in natural waters. Anal Chim Acta 151:297–315

    Google Scholar 

  • Mehlhorn H (ed) (1988) Parasitology in focus. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Mehlhorn H, Sénaud J, Scholtyseck E (1972) Sur l'ultrastructure des organites liés à la division nucléaire chez les coccidiesEimeria falciformis etEimeria maxima, au cours de la schizogonie et de la microgamétogenèse. C R Acad Sci III 275:835–839

    Google Scholar 

  • Mehlhorn H, Ortmann-Falkenstein E, Haberkorn A (1984) The effects of sym. triazinones on developmental stages ofEimeria tenella, E. maxima, andE. acervulina. A light and electron microscopical study. Z Parasitenkd 70:173–182

    Google Scholar 

  • Michel H, Deisenhofer J (1986) X-ray diffraction studies on a crystalline bacterial photosynthetic reaction center: a progress report and conclusions on the structure of photosystem II reaction center. In: Staehelin LA, Arntzen CJ (eds) Encyclopedia of plant physiology, vol 19. Springer, Berlin Heidelberg New York, pp 371–381

    Google Scholar 

  • Palmer JD (1992) Green ancestry of malarian parasites; Curr Biol 2:318–320

    Google Scholar 

  • Palmer JD (1993) A genetic rainbow of plastids. Nature 364:762–763

    Google Scholar 

  • Porchet-Hanneré E (1972) Observations en microscopie photonique et électronique sur la sporogenèse deDehornia (1)sthenelais (n.gen., sp.n.), sporozoaire parasite de l'annelide polychèteSthenelais boa (Aphroditides). Protistologica 8:245–255

    Google Scholar 

  • Rijgersberg CP, Amesz J (1980) Fluorescence and energy transfer in phycobiliprotein-containing algae at low temperature. Biochim Biophys Acta 593:261–271

    Google Scholar 

  • Rijgersberg CP, Amesz J, Thielen PGM, Swager JA (1979) Fluorescence emission spectra of chloroplast and subchloroplast preparations at low temperature. Biochim Biophys Acta 545:473–482

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method; a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–426

    Google Scholar 

  • Sandmann G, Böger P (1986) Sites of herbicide inhibition at the photosynthetic apparatus. In: Staehelin LA, Arntzen CJ (eds) Encyclopedia of plant physiology, new series, vol 19. Springer, Berlin Heidelberg New York, pp 595–602

    Google Scholar 

  • Schnepf E (1980) Types of plastids: their development and interconversions. In: Reinert J (ed) Chloroplast. Springer, Berlin Heidelberg New York, pp 1–27

    Google Scholar 

  • Scholtyseck E, Mehlhorn H (1970) Ultrastructural study of characteristic organelles (paired organelles, micronemes, micropores) of sporozoa and related organisms. Z Parasitenkd 34:68–94

    Google Scholar 

  • Sénaud J (1967) Contribution à l'étude des sarcosporidies et des toxoplasmes. Protistologica 3:167–232

    Google Scholar 

  • Siddal ME (1992) Hohlzylinder. Parasitol Today 8:90–91

    Google Scholar 

  • Staay GWM van der, Brouwer A, Baard RL, Mourik F van, Matthijs HCP (1992) Separation of photosystems I and II from the oxychlorobacterium (prochlorophyte)Prochlorothrix hollandica and association of chlorophyllb binding antenna with photosystem II. Biochim Biophys Acta 1102:220–228

    Google Scholar 

  • Trebst A (1986) The topology of plastochinone and herbicide binding peptides of photosystem II in the thylakoid membrane. Z Naturforsch 41C:240–245

    Google Scholar 

  • Trebst A, Depka B, Kipper M (1990) The topology of the reaction center polypeptides of photosystem II. In: Baltscheffsky M (ed) Current research in photosynthesis. Kluwer, Dordrecht, pp 217–222

    Google Scholar 

  • Vermaas WFJ, Ikeuchi M (1991) Photosystem II. In: Bogorad L, Vasil IK (eds) The photosynthetic apparatus: molecular biology and operation. Cell culture and somatic cell genetics of plants, vol 7B. Academic Press, SanDiego, pp 25–111

    Google Scholar 

  • Vivier E, Petitprez A (1969) Observations ultrastructurales sur l'hématozoaireAnthemosoma garnhami et examen de critères morphologiques utilisables pour la taxonomie chez les sporozoaires. Protistologica 5:363–379

    Google Scholar 

  • Vivier E, Petitprez A (1972) Données ultrastructurales complémentaires, morphologiques et cytochimiques, surToxoplasma gondii. Protistologica 8:199–221

    Google Scholar 

  • Vivier E, Petitprez A, Landau I (1972) Observations ultrastructurales sur la sporoblastogenèse de l'hémogrégarine,Hepatozoon domerguei, coccidie Adeleidea. Protistologica 8:315–334

    Google Scholar 

  • Waters AP (1994) The ribosomal RNA genes ofPlasmodium. Adv Parasitol 34:33–79

    Google Scholar 

  • Whatley JM (1992) Membranes and plastid origins. In: Lewin RA (ed) Origins of plastids. Chapman and Hall, New York London, pp 77–106

    Google Scholar 

  • Williamson DH, Gardner MJ, Preiser P, Moore DG, Rangashari K, Wilson RJM (1994) The evolutionary origin of the 35 kB circular DNA ofPlasmodium falciparum: new evidence supports a possible rhodophyte ancestry. Mol Gen Genet 243:249–252

    Google Scholar 

  • Wilson RJM, Gardner MJ, Feagin JE, Williamson DH (1991) Have malaria parasites three genomes? Parasitol Today 7:136–138

    Google Scholar 

  • Zypen E van der, Piekarski G (1967) Ultrastrukturelle Unterschiede vonToxoplasma gondii. Zentralbl Bakteriol Mikrobiol Hyg [A] 203:495–517

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hackstein, J.H.P., Mackenstedt, U., Mehlhorn, H. et al. Parasitic apicomplexans harbor a chlorophyll a-D1 complex, the potential target for therapeutic triazines. Parasitol Res 81, 207–216 (1995). https://doi.org/10.1007/BF00937111

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00937111

Keywords

Navigation