Skip to main content
Log in

Vertebrate mono-ADP-ribosyltransferases

  • Part III Mono(ADP-ribosylation)
  • A. ADP-ribosylation Cycle
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Mono-ADP-ribosylation appears to be a reversible modification of proteins, which occurs in many eukaryotic and prokaryotic organisms. Multiple forms of arginine-specific ADP-ribosyltransferases have been purified and characterized from avian crythrocytes, chicken polymorphonuclear leukocytes and mammalian skeletal muscle. The avian transferases have similar molecular weights of∼28 kDa, but differ in physical, regulatory and kinetic properties and subcellular localization. Recently, a 38-kDa rabbit skeletal muscle ADP-ribosyltransferase was purified and cloned. The deduced amino acid sequence contained hydrophobic amino and carboxy termini, consistent with known signal sequences of glycosylphosphatidylinositol (GPI)-anchored proteins. This arginine-specific transferase was present on the surface of mouse myotubes and of NMU cells transfected with the cDNA and was released with phosphatidylinositol-specific phospholipase C. Arginine-specific ADP-ribosyltransferases thus appear to exhibit considerable diversity in their structure, cellular localization, regulation and physiological role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Williamson KC, Moss J: Mono-ADP-ribosyltransferases and ADP-ribosylarginine hydrolases: a Mono-ADP-ribosylation cycle in animal cells. In: J Moss, M. Vaughan (eds) ADP-ribosylating toxins and G proteins: Insights into signal transduction. American Society for Microbiology, Washington, DC, pp 493–510, 1990

    Google Scholar 

  2. Moss J, Stanley SJ, Watkins PA: Isolation and properties of an NAD-and guanidine-dependent ADP-ribosyltransferase from turkey erythrocytes. J Biol Chem 255:5838–5840, 1980

    PubMed  Google Scholar 

  3. Moss J, Stanley SJ, Osborne JC Jr: Effect of self-association on activity of an ADP-ribosyltransferase from turkey erythrocytes. J Biol Chem 256: 11452–11456, 1981

    PubMed  Google Scholar 

  4. Moss, J, Stanley SJ: Histone-dependent and histone-independent forms of an ADP-ribosyltransferase from human and turkey erythrocytes. Proc Natl Acad Sci USA 78:4809–4812, 1981

    PubMed  Google Scholar 

  5. Moss J, Stanley SJ, Osborne JC Jr: Activation of an NAD:arginine ADP-ribosyltransferase by histone. J Biol Chem 257:1660–1663, 1982

    PubMed  Google Scholar 

  6. Moss J, Osborne CJ Jr, Stanley SJ: Activation of an erythrocyte NAD:arginineADP-ribosyltransferase by lysolecithin and nonionic and zwitterionic detergents. Biochemistry 23:1353–1357, 1984

    PubMed  Google Scholar 

  7. Osborne JC Jr, Stanley SJ, Moss J: Kinetic mechanisms of two NAD:arginineADP-ribosyltransferases: the soluble, salt-stimulated transferase from turkey erythrocytes and choleragen, a toxin fromVibrio cholerae. Biochemistry 24:5235–5240, 1985

    PubMed  Google Scholar 

  8. Yost DA, Moss J: Amino acid-specific ADP-ribosylation. J Biol Chem 258:4926–4929, 1983

    PubMed  Google Scholar 

  9. West RE Jr, Moss J: Amino acid specific ADP-ribosylation: specific NAD:arginine mono-ADP-ribosyltransferases associated with turkey erythrocyte nuclei and plasma membranes. Biochemistry 25:8057–8062, 1986

    PubMed  Google Scholar 

  10. Peterson JE, Larew JS-A, Graves DJ: Purification and partial characterization of arginine specific ADP-ribosyltransferase from skeletal muscle microsomal membranes. J Biol Chem 265:17062–17069, 1990

    PubMed  Google Scholar 

  11. Zolkiewska A, Nightingale MS, Moss J: Molecular characterization of NAD:arginineADP-ribosyltransferase from rabbit skeletal muscle. Proc Natl Acad Sci USA 89:11352–11356, 1992

    PubMed  Google Scholar 

  12. Tanigawa Y, Tsuchiya M, Imai Y, Shimoyama M: ADP-ribosyltransferase from hen liver nuclei. J Biol Chem 259:2022–2029, 1984

    Google Scholar 

  13. Tanigawa Y, Tsuchiya M, Imai Y, Shimoyama M: Mono-(ADP-ribosyl)ation of hen liver nuclear proteins suppresses phosphorylation. Biochem Biophys Res Commun 113:135–141, 1983

    PubMed  Google Scholar 

  14. Tanigawa Y, Tsuchiya M, Imai Y, Shimoyama M: ADP-ribosylation regulates the phosphorylation of histones by the catalytic subunit of cyclic AMP-dependent protein kinase. FEBS Lett 160:217–220, 1983

    PubMed  Google Scholar 

  15. Ushiroyama T, Tanigawa Y, Tsuchiya M, Matsuura R, Ueke M, Sugimoto O, Shimoyama M: Amino acid sequence of histone H1 at the ADP-riboseaccepting site and ADP-ribose histone-H1 adduct as an inhibitor of cyclic-AMP-dependent phosphorylation. Eur J Biochem 151:173–177, 1985

    PubMed  Google Scholar 

  16. Tsuchiya M, Tanigawa Y, Ushiroyama T, Matsuura R, Shimoyama M: ADP-ribosylation of phosphorylase kinase and block of phosphate incorporation into the enzyme. Eur J Biochem 147:33–40, 1985

    PubMed  Google Scholar 

  17. Matsuura R, Tanigawa Y, Tsuchiya M, Mishima K, Yoshimura Y, Shimoyama M: ADP-ribosylation suppresses phosphorylation of the L-type pyruvate kinase. Biochim Biophys Acta 969:57–65, 1988

    PubMed  Google Scholar 

  18. Mishima K, Terashima M, Obara S, Yamada K, Imai K, Shimoyama M: Arginine-specific ADP-ribosyltransferase and its acceptor protein p33 in chicken polymorphonuclear cells: co-localization in the cell granules, partial characterization, andin situ mono(ADP-ribosyl)ation. J Biochem 110:388–394, 1991

    PubMed  Google Scholar 

  19. Soman G, Mickelson JR, Louis CF, Graves DJ: NAD:guanidino group specific mono ADP-ribosyltransferase activity in skeletal muscle. Biochem Biophys Res Commun 120:973–980, 1984

    PubMed  Google Scholar 

  20. Soman G, Graves DJ: Endogenous ADP-ribosylation in skeletal muscle membranes. Arch Biochem Biophys 260:56–66, 1988

    PubMed  Google Scholar 

  21. Hara N, Mishima K, Tsuchiya M, Tanigawa Y, Shimoyama M: Mono(ADP-ribosyl)ation of Ca2+-dependent ATPase in rabbit skeletal muscle sarcoplasmic reticulum and the effect of poly L-lysine. Biochem Biophys Res Commun 144:856–862, 1987

    PubMed  Google Scholar 

  22. Piron KJ, McMahon KK: Localization and partial characterization of ADP-ribosylation products in hearts from adult and neonatal rats. Biochem J 270:591–597, 1990

    PubMed  Google Scholar 

  23. Kharadia SV, Huiatt TW, Huang H-Y, Peterson JE, Graves DJ: Effect of an arginine-specific ADP-ribosyltransferase inhibitor on differentiation of embryonic chick skeletal muscle cells in culture. Exp Cell Res 201:33–42, 1992

    PubMed  Google Scholar 

  24. Larew JS-A, Peterson JE, Graves DJ: Determination of the kinetic mechanism of arginine-specificADP-ribosyltransferase using a high performance liquid chromatographic assay. J Biol Chem 266:52–57, 1991

    PubMed  Google Scholar 

  25. Taniguchi M, Tsuchiya M, Shimoyama M: Comparison of acceptor protein specificities on the formation of ADP-ribose-acceptor adducts by arginine-specific ADP-ribosyltransferase from rabbit skeletal muscle sarcoplasmic reticulum with those of the enzyme from chicken peripheral polymorphonuclear cells. Biochim Biophys Acta 1161:265–271, 1993

    PubMed  Google Scholar 

  26. Okazaki IJ, Zolkiewska A, Nightingale MS, Moss J: Immunological and molecular conservation of mammalian glycosylphosphatidylinositol-linked ADP-ribosyltransferase from skeletal muscle. Submitted, 1994

  27. Ferguson MAJ, Williams AF: Cell-surface anchoring of proteins via glycosylphosphatidylinositol structures. Annu Rev Biochem 57:285–320, 1988

    PubMed  Google Scholar 

  28. Low MG: Glycosylphosphatidylinositol: a versatile anchor for cell surface proteins. FASEB J 3:1600–1608, 1989

    PubMed  Google Scholar 

  29. Gerber LD, Kodukula K, Udenfriend S: Phosphatidylinositol glycan (PIG) anchored membrane proteins J Biol Chem 267:12168–12173, 1992

    PubMed  Google Scholar 

  30. McMahon KK, Piron KJ: The 52 kDa ADP-ribosylated protein in the rat heart plasma membrane: Is it Gsa? In: G.G. Poirier, P Moreau (eds) ADP-ribosylation reactions. Springer Verlag, NY, pp, 377–379, 1992

    Google Scholar 

  31. Soman G, Haregewoin A, Hom RC, Finberg RW: Guanidine group specific ADP-ribosyltransferase in murine cells. Biochem Biophys Res Commun 176:301–308, 1991

    PubMed  Google Scholar 

  32. Hara N, Tsuchiya M, Mishima K, Tanigawa Y, Shimoyama M: ADP-ribosylation of Ca2+-dependent ATPasein vitro suppresses the enzyme activity. Biochem Biophys Res Commun 148:989–994, 1987

    PubMed  Google Scholar 

  33. Taniguchi M, Tanigawa Y, Tsuchiya M, Mishima K, Obara S, Yamada K, Shimoyama M: Arginine-specific ADP-ribosyltransferase from rabbit skeletal muscle sarcoplasmic reticulum is solubilized as the active form with trypsin. Biochem Biophys Res Commun 164:128–133, 1988

    Google Scholar 

  34. Jones LR, Besch HR, Fleming JW Jr, McConnaughey MM, Watanabe AM: Separation of vesicles of cardiac sarcolemma from vesicles of cardiac sarcoplasmic reticulum. J Biol Chem 254:530–539, 1979

    PubMed  Google Scholar 

  35. Maehama T, Takahashi K, Ohoka Y, Ohtsuka T, Ui M, Katada T: Identification of a botulinum C3-like enzyme in bovine brain that catalyzes ADP-ribosylation of GTP-binding proteins. J Biol Chem 266:10062–10065, 1991

    PubMed  Google Scholar 

  36. Lee H, Iglewski WJ: Cellular ADP-ribosyltransferase with the same mechanism of action as diphtheria toxin andPseudomonas toxin A. Proc Natl Acad Sci USA 81:2703–2707, 1984

    PubMed  Google Scholar 

  37. Fendrick JL, Iglewski WJ: Endogenous ADP-ribosylation of elongation factor 2 in polyoma virus-transformed baby hamster kidney cells. Proc Natl Acad Sci USA 86:554–557, 1989

    PubMed  Google Scholar 

  38. Iglewski WJ, Dewhurst S: Cellular mono(ADP-ribosyl)transferase inhibits protein synthesis. FEBS Lett 283:235–238, 1991

    PubMed  Google Scholar 

  39. Fendrick JL, Iglewski WJ, Moehring JM, Moehring TJ: Characterization of the endogenous ADP-ribosylation, of wild-type and mutant elongation factor 2 in eukaryotic cells. Eur J Biochem 205:25–31, 1992

    PubMed  Google Scholar 

  40. Matsuyama S, Tsuyama S: Mono-ADP-ribosylation in brain: purification and characterization of ADP-ribosyltransferases affecting actin from rat brain. J Neurochem 57:1380–1387, 1991

    PubMed  Google Scholar 

  41. Feldman AM, Levine MA, Baughman KL, Van Dop C: NAD+-mediated stimulation of adenylate cyclase in cardiac membranes. Biochem Biophys Res Commun 142:631–637, 1987

    PubMed  Google Scholar 

  42. Abramowitz J, Jena BP: Evidence for a rabbit luteal ADP-ribosyltransferase activity which appears to be capable of activating adenylyl cyclase. Int J Biochem 23:549–559, 1991

    PubMed  Google Scholar 

  43. Obara S, Yamada K, Yoshimura Y, Shimoyama M: Evidence for the endogenous GTP-dependent ADP-ribosylation of the α-subunit of the stimulatory guanyl-nucleotide-binding protein concomitant with an increase in basal adenylyl cyclase activity in chicken spleen cell membrane. Eur J Biochem 200:75–80, 1991

    PubMed  Google Scholar 

  44. Duman RS, Terwilliger RZ, Nestler EJ: EndogenousADP-ribosylation in brain: initial characterization of substrate proteins. J Neurochem 57: 2124–2132, 1991

    PubMed  Google Scholar 

  45. Donnelly LE, Boyd RS, MacDermont J: Gs is a substrate for mono(ADP-ribosyl)transferase of NG108-15 cells. Biochem J 288:331–336, 1992

    PubMed  Google Scholar 

  46. Jacquemin C, Thibout H, Lambert B, Correze C: Endogenous ADP-ribosylation of Gs subunit and autonomous regulation of adenylate cyclase. Nature 323:182–184, 1986

    PubMed  Google Scholar 

  47. Molina y Vedia L, Nolan RD, Lapetina EG: The effect of iloprost on the ADP-ribosylation of Gs α (the α-subunit of Gs). Biochem J 261:841–845, 1989

    PubMed  Google Scholar 

  48. Carlsson L, Lazarides E: ADP-ribosylation of theM, 83,000 stress-inducible and glucose-regulated protein in avian and mammalian cells: Modulation by heat shock and glucose starvation. Proc Natl Acad Sci USA 80: 4664–4668, 1983

    PubMed  Google Scholar 

  49. Ledford BE, Jacobs DF: Translational control of ADP-ribosylation in eukaryotic cells. Eur J Biochem 161:661–667, 1986

    PubMed  Google Scholar 

  50. Leno GH, Ledford BE: ADP-ribosylation of the 78-kDa glucose-regulated protein during nutritional stress. Eur J Biochem 186:205–211, 1989

    PubMed  Google Scholar 

  51. Leno GH, Ledford BE: Reversible ADP-ribosylation of the 78 kDa glucose-regulated protein. FEBS Lett 276:29–33, 1990

    PubMed  Google Scholar 

  52. Staddon JM, Bouzyk MM, Rozengurt E: Interconversion of GRP78/BiP. J Biol Chem 267:25239–25245, 1992

    PubMed  Google Scholar 

  53. Brune B, Molina y Vedia L, Lapetina EG: Agonist-induced ADP-ribosylation of a cytosolic protein in human platelets. Proc Natl Acad Sci USA 87:3304–3308, 1990

    PubMed  Google Scholar 

  54. Hammerman MR, Hansen VA, Morrissey JJ: ADP-ribosylation of canine renal brush border membrane vesicle proteins is associated with decreased phosphate transport. J Biol Chem 257:12380–12386, 1982

    PubMed  Google Scholar 

  55. Kempson SA, Curthoys NP: NAD+-dependent ADP-ribosyltransferase in renal brush-border membranes. Am J Physiol 245:C449-C456, 1983

    PubMed  Google Scholar 

  56. Kempson SA: Mechanism of stimulation, of ADP-ribosyltransferase in the renal brush-border membrane by EDTA. Biochim Biophys Acta 770: 101–104, 1989

    Google Scholar 

  57. Duncan MR, Rankin PR, King RL, Jacobson MK, Dell'Orco RT: Stimulation of mono(ADP-ribosyl)ation by reduced extracellular calcium levels in human fibroblasts. J Cell Physiol 134:161–165, 1988

    PubMed  Google Scholar 

  58. Halldorsson H, Bodvarsdottir T, Kjeld M, Thorgeirsson G: Role of ADP-ribosylation in endothelial signal transduction and prostacyclin production. FEBS Lett 314:322–326, 1992

    PubMed  Google Scholar 

  59. Juedes MJ, Kass GEN, Orrenius S: m-iodobenzylguanidine increases the mitochondrial Ca2+ pool in isolated hepatocytes. FEBS Lett 313:39–42, 1992

    PubMed  Google Scholar 

  60. Mishima Y, Nishimura T, Muramatsu M, Kominami R: Transcription of mouse ribosomal RNA gene with inactive extracts is activated by NAD+ in vitro. J Biochem 113:36–42, 1993

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zolkiewska, A., Okazaki, I.J. & Moss, J. Vertebrate mono-ADP-ribosyltransferases. Mol Cell Biochem 138, 107–112 (1994). https://doi.org/10.1007/BF00928450

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00928450

Key words

Navigation