Skip to main content
Log in

Untersuchung von Eisen(III)-phosphiten im Hinblick auf die Wasserstoffbindungen

Investigation of iron(III) phosphites with regard to their hydrogen bonding

  • Anorganische, Struktur- und Physikalische Chemie
  • Published:
Monatshefte für Chemie / Chemical Monthly Aims and scope Submit manuscript

Abstract

Iron(III) phosphites, vic. Fe2(HPO3)3·9 H2O, FeH3P2O6·3 H2O, FeH6P3O9·H2O and Fe4H33P15O45·6 H2O were studied by means of powder X-ray, thermographic, IR and UV spectroscopy methods and by measurement of magnetic susceptibility. From the results obtained, and from analogy with phosphites studied earlier, the following structural model can be proposed: in the compounds studied, every iron atom is surrounded by six oxygen atoms of the water molecules and phosphite or, polyorthophosphite anions which form a weak ligand field of approximately octahedral symmetry. In Fe2(HPO3)3·9 H2O, symmetry of the anion is decreased from the point group C3v to the Cs group. This anion is characterised by two bonding distances between phosphorus and oxygen atoms,r PO=1,46 Å andr PO 2=1,50 Å, the respective force constants beingK PO=8.7 mdyn/Å andK PO2=7.1 mdyn/Å. Three types of hydrogen bonds occur in the crystal lattices of the compounds studied. The weakest bond (bond lengthr=2.86–2.88 Å, bond energyE=4.6–5.0 kcal/bond) is formed between molecules of hydrate water, its energy approaching that of the hydrogen bond in liquid water. The stronger hydrogen bond (r=2.67–2.70 Å,E=5.7 to 8.0 kcal/bond) is found between water molecules and phosphite or polyorthophosphite anions. The strongest hydrogen bond (r=2.55–2.64 Å) is formed by polyorthophosphite anions, linking hydroxyl groups to oxygen atoms bound to different phosphorus atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. M. Ebert undL. Kavan, Z. Chem., in Durck.

  2. J. Podlaha, Coll. Czech. Chem. Commun.29, 1128 (1964).

    Google Scholar 

  3. H. Rose, Pogg. Ann.9, 23 (1827).

    Google Scholar 

  4. C. Rammelsberg, J. Chem. Soc.20, 358 (1867).

    Google Scholar 

  5. M. Ebert undM. Pelikánová, Mh. Chem.105, 11 (1974).

    Google Scholar 

  6. M. Ebert undJ. Eysseltová, Mh. Chem.105, 1030 (1974).

    Google Scholar 

  7. M. Ebert, J. Eysseltová undA. Rottová, Coll. Czech. Chem. Commun.35, 1824 (1970).

    Google Scholar 

  8. M. Ebert, Chemiker-Ztg.44, 839 (1970).

    Google Scholar 

  9. M. Ebert, J. Eysseltová undJ. Čipera, Chem. Průmysl17, 283 (1967).

    Google Scholar 

  10. M. Ebert, J. Eysseltová undJ. Čipera, Chem. Průmysl18, 239 (1968).

    Google Scholar 

  11. M. Ebert undJ. Eysseltová, Chem. Zvesti22, 862 (1968).

    Google Scholar 

  12. M. Ebert undJ. Eysseltová, Coll. Czech. Chem. Commun.35, 545 (1970).

    Google Scholar 

  13. A. B. P. Lever, Inorganic Electronic Spectroscopy. London: Elsevier. 1969.

    Google Scholar 

  14. G. Brun, Rev. Chim. Min.7, 413 (1970).

    Google Scholar 

  15. B. Barnoyer, G. Brun undM. Maurin, Rev. Chim. Min.7, 941 (1970).

    Google Scholar 

  16. A. Novak, Structure and Bonding18, 177 (1974).

    Google Scholar 

  17. E. A. Robinson, Canad. J. Chem.41, 3021 (1963).

    Google Scholar 

  18. W. J. Lehmann, J. Mol. Spectr.7, 261 (1961).

    Google Scholar 

  19. R. M. Badger, J. Chem. Phys.2, 128 (1934).

    Google Scholar 

  20. R. M. Badger, J. Chem. Phys.3, 710 (1935).

    Google Scholar 

  21. W. Gordy, J. Chem. Phys.14, 305 (1946).

    Google Scholar 

  22. L. Jenšovský, Z. Chem.2, 334 (1962).

    Google Scholar 

  23. M. Ebert undJ. Eysseltová, Mh. Chem.103, 188 (1972).

    Google Scholar 

  24. M. Ebert undJ. Eysseltová, Mh. Chem.100, 553 (1969).

    Google Scholar 

  25. A. V. Karjakin undG. A. Krivencova, Sostojanije vody v organičeskich i neorganičeskich sojedinenijach. Moskva: Nauka. 1973.

    Google Scholar 

  26. J. J. Efimov undJ. I. Naberuchin, J. Strukt. Khim. [russ.]12, 591 (1971).

    Google Scholar 

  27. G. V. Juchnevič undA. V. Karjakin, Dokl. Akad. Nauk SSSR156, 681 (1964).

    Google Scholar 

  28. A. V. Karjakin undG. A. Muradova, J. Fiz. Khim. [russ.]42, 2735 (1968).

    Google Scholar 

  29. D. J. Samojlov, Struktura vodnych rastvorov elektrolitov i gidratacija ionov. Moskava: Izd. AN SSSR. 1957.

    Google Scholar 

  30. M. Ebert undJ. Eysseltová, Sammelband der 26. Konferenz der Tschechischen chemischen Gesellschaft, České Budějovice, 1970.

  31. M. Ebert undL. Kavan, Chem. Zvesti, in Druck.

  32. M. Ebert undJ. Podlaha, Nature188, 657 (1960); J. Neorg. Khim. [russ.]7, 2185 (1962).

    Google Scholar 

  33. M. Ebert undJ. Podlaha, Coll. Czech. Chem. Commun.26, 753 (1961).

    Google Scholar 

  34. J. W. Mellor, A Comprehensive Treatise on Inorganic and Theoretical Chemistry, Vol. XIV. London: Longmans. 1935.

    Google Scholar 

  35. A. Jílek undJ. Kota, Vážková analysa a elektroanalysa II. Praha: Techn. věd. vyd. 1951.

    Google Scholar 

  36. O. Tomíček, Kvantitativní analysa. Praha: SZN. 1963.

    Google Scholar 

  37. F. Vilím, Čechoslov. Čas. Fyz.5, 416 (1955).

    Google Scholar 

  38. J. Julák, Dissertation, Karls-Universität, Praha. 1972.

  39. J. Lewis undR. C. Wilkins, Modern Coordination Chemistry. New York: Interscience. 1960.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Mit 2 Abbildungen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebert, M., Kavan, L. Untersuchung von Eisen(III)-phosphiten im Hinblick auf die Wasserstoffbindungen. Monatshefte für Chemie 106, 1499–1512 (1975). https://doi.org/10.1007/BF00913625

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00913625

Navigation