Skip to main content
Log in

Titanium nickelide. Crystalline structure and phase transformations

  • Published:
Soviet Physics Journal Aims and scope

Conclusion

In conclusion, we turn attention to the following aspects of the structural investigations of the Ti-Ni system near the equiatom composition, which have not yet received development in practice up to this time.

  1. 1.

    Existing experimental data indicate that the high-temperature TiNi phase has a B2 structure with ordered atom location of CsCl type. Meanwhile, up to now there are no purposeful investigations (firstly by the neutron diffraction method) of the change in the degree of long-range order in TiNi as a function of the temperature and concentration. These investigations are important not only for the setting up of the atomic distribution in the high-temperature phase, they have a direct relationship to the comprehension of the nature of the change in MT temperature and sequence, as well as to the formation of noncommensurate structures in the TiNi system.

  2. 2.

    The passage from the MT sequence B2 → B19′ to B2 → R → B19′ is of great value for the realization of the superelasticity effect and the achievement of large reversible strains in TiNi alloys. Investigations existing at this time indicate that redistribution of the Ti and Ni atoms precedes this passage. However, what changes occur here in the crystalline or electronic structure of the high-temperature phase is not known here.

  3. 3.

    For intermetallides with B2 structure, a high concentration of structural vacancies (especially for deviations from the stoichiometric composition) that can exert noticeable influence on the phase transformations is not unusual. However, up to now there are no investigations of the change in vacancy concentration in TiNi alloys as a function of the temperature and concentration of the Ti and Ni atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. F. Lawes and H. J. Wallbaum, J. Naturwiss.,27, 674 (1939).

    Google Scholar 

  2. P. Pietrokowski and G. F. Yongkin, J. Appl. Phys.,31, No. 10, 1763 (1960).

    Google Scholar 

  3. P. Duwez and L. Taylor, Trans. AIME,188, 1173 (1950).

    Google Scholar 

  4. H. Margolin, E. Ence, and J. P. Nilsen, Trans. AIME,197, 243 (1953).

    Google Scholar 

  5. G. R. Purdy and J. G. Parr, Trans. AME,221, 636 (1961).

    Google Scholar 

  6. J. V. Gilfrich, Adv. X-Ray Anal.,6, 74 (1963).

    Google Scholar 

  7. F. E. Wang, J. Appl. Phys.,36, No. 10, 3232 (1965).

    Google Scholar 

  8. F. E. Wang, Yu-Chi Cheng, Katherine Hu, and Pei-Hei Tsao, J. Appl. Phys.,40, 1980 (1969).

    Google Scholar 

  9. A. Nagasawa, J. Phys. Soc. Jpn.,31, No. 1, 136 (1971).

    Google Scholar 

  10. H. Takei, M. Matsumot, T. Ogawa, E. Syugo, and To Homma, Kakuriken Kepkyu Khokoku,6, 257 (1973).

    Google Scholar 

  11. A. I. Lotkov, V. V. Fadin, and V. N. Grishkov, “Shape memory and superelasticity effects,” Preprint 9/80 [in Russian], Inst. Metal Physics, Kiev (1980).

    Google Scholar 

  12. K. Otsuka, T. Sawamura, and K. Shimizu, Phys. Status Solidi (A),5, 457 (1971).

    Google Scholar 

  13. R. J. Wasilewski, S. R. Butler, J. E. Hanlon, and D. Warden, Met. Trans.,2, 229 (1971).

    Google Scholar 

  14. T. Homma and H. Takai, Nikhon Kindzoku Gakkaisi,39, No. 2, 175 (1975).

    Google Scholar 

  15. S. Miyazaki, Y. Ohmi, K. Otsuka, Y. Suzuki, J. Phys. (Fr.),43, No. 12, 231, Suppl “ICOMAT-82“ Int. Cnf. Martensitic Transform., Aug. 8–12 (1982).

    Google Scholar 

  16. M. H. Mueller and H. W. Knott, US At. Energy Comm., ANL-6330, 175 (1960).

    Google Scholar 

  17. M. H. Mueller and H. W. Knott, Trans. Met. Soc. AIME,227, 674 (1963).

    Google Scholar 

  18. A. J. Rozner, E. F. Heintzelman, W. J. Buehler, and J. V. Gilfrich, Trans. ASM,58, 415 (1965).

    Google Scholar 

  19. F. Lawes and H. J. Wallbaum, Z. Krist., A101, 78 (1939).

    Google Scholar 

  20. T. Suzuki and K. Matsumoto, J. Jpn. Inst. Metals,37, No. 1, 39 (1973).

    Google Scholar 

  21. S. J. Bhan, Less-Common Metals,25, 215 (1971).

    Google Scholar 

  22. B. S. Krylov, S. A. Kuz'min, et al. Metallov, Term. Obrat. Metal., No. 8, 49 (1978).

    Google Scholar 

  23. D, Koskimaki, M. J. Marsinkowski, and A. S. Sastry, Trans. Met. Soc. AIME,245, 1883 (1969).

    Google Scholar 

  24. V. I. Kolomitsev, V. A. Lobodiuk, and L. G. Khandros, Phys. Status Solidi (A),50, K127 (1978).

    Google Scholar 

  25. D. P. Dautovich and G. R. Purdy, Canad. Metal. Q.,4, No. 2, 129 (1965).

    Google Scholar 

  26. M. J. Marsinkowsky, A. S. Sastry, and D. Koskimaki, Phil. Mag.,18, No. 155, 945 (1968).

    Google Scholar 

  27. G. D. Sandrock, A. J. Perkins, and R. F. Hehemann, Met. Trans.,2, 2769 (1971).

    Google Scholar 

  28. G. M. Michal and R. Sinclair, Acta Kristallogr.,B37, 1803 (1981).

    Google Scholar 

  29. W. Buhrer, R. Gotthardt, A. Kulik, and O. Mercier, J. Phys. (Fr.),43, No. 12, 219, Suppl. “ICOMAT-82,” Int. Conf. Martensitic Transform, Aug. 8–12 (182).

  30. L. A. Monasevich, Author's Abstract of Candidate's Dissertation [in Russian], Tomsk Univ. (1979).

  31. F. Wang, S. J. Pickart, and H. A. Alperin, J. Appl. Phys.,43, No. 1, 97 (1972).

    Google Scholar 

  32. K. Chandra and G. R. Purdy, J. Appl. Phys.,39, No. 5, 2176 (1968).

    Google Scholar 

  33. D. de Fontaine, Acta Met.,18, 275 (1970).

    Google Scholar 

  34. A. Nagasava, Phys. Soc. Jpn.,29, 1386 (1970).

    Google Scholar 

  35. G. P. Gupta and A. A. Johnson, J. Phys. Soc. Jpn.,31, 605 (1971).

    Google Scholar 

  36. S. E. Hanlon, S. R. Butler, and R. J. Wasilewski, Trans. AMS AIME,239, 1323 (1967).

    Google Scholar 

  37. I. I. Kornilov, E. V. Kachur, and O. K. Belousov, Fiz. Met. Metalloved.,32, No. 2, 420 (1971).

    Google Scholar 

  38. I. I. Kornilov, O. K. Belousov, and E. V. Kachur, Titanium Nickelide and Other Alloys with the Memory Effect [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  39. V. N. Khachin, V. E. Gjunter, V. P. Sivokha, and A. S. Savvinov, Proc. Int. Conf. on Martensitic Transforms., “ICOMAT-79,” Cambridge, Mass., June 24–29 (1979), 1, 474.

  40. D. B. Chernov, Yu. L Paskal', V. E. Gyunter, and L. A. Monasevich, Dokl. Akad. Nauk SSSR,247, No. 4, 854 (1979).

    Google Scholar 

  41. I. I. Sasovskaya, S. A. Shabalovskaya, and A. I. Lotkov, Zh. Eksp. Teor. Fiz.,77, 2344 (1979).

    Google Scholar 

  42. S. A. Shabalovskaya, I. I. Sasovskaya, and A, I. Lotkov, Fiz. Tverd. Tela,24, No. 3, 899 (1982).

    Google Scholar 

  43. V. E. Egorushkin and A. I. Kul'ment'ev, Fiz. Tverd. Tela,26, No. 3, 950 (1984).

    Google Scholar 

  44. V. E. Egorushkin, A. F. Nyavro, and V. P. Fadin, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 4, 121 (1979).

    Google Scholar 

  45. S. K. Sikka, Y. K. Vohra, and R. Chimdambaran, Prog. Met. Sci.,27, 245 (1982).

    Google Scholar 

  46. O. Mercier, P. Bruesch, and W. Buhrer, Helv. Phys. Acta,53, No. 2, 243 (1980).

    Google Scholar 

  47. P. Moine, G. M. Michal, and R. Sinclair, Acta Met.,30, 109 (1982).

    Google Scholar 

  48. G. M. Michal, P. Moine, and R. Sinclair, Acta. Met.,30, 125 (1982),

    Google Scholar 

  49. P. Moine, E. Coo, and R. Sinclair, J. Phys. (Fr.).,43, No. 12, 243, Suppl. “ICOMAT-82,” Int. Conf. Martensitic Transform, Aug. 8–12 (1982).

    Google Scholar 

  50. V. G. Pushin, V. N. Khachin, et al., Dokl. Akad. Nauk SSSR,247, No. 6, 1388 (1984).

    Google Scholar 

  51. A. S. Sawinov, V. P. Sivokha, and V. N. Khachin, Metallofizika,5, No. 6, 30 (1983).

    Google Scholar 

  52. A. I. Lotkov, V. N. Grishkov, et al., Izv. Vyssh. Uchebn. Zaved., Fiz., No. 10, 16 (1982).

    Google Scholar 

  53. E. A. Starke and E. U. Lee, Mater. Res. Bull.,2, 231 (1967).

    Google Scholar 

  54. I. I. Kornilov, E. V. Kachur, and O. K. Belousov, Izv. Akad, Nauk SSSR, Metally, No. 2, 209 (1975).

    Google Scholar 

  55. A. I. Lotkov, V. N. Grishkov, A. V. Kuznetsov, and S. N. Kulkov, Phys. Status Solidi (A),75, 373 (1983).

    Google Scholar 

  56. T. D. Dobrovol'skaya, P. V. Titov, and L. G. Khandros, Report to Intern. Conf. “ICOMAT-77,” Kiev, May 16–20, 1977, Naukova Dumka, Kiev (1979).

    Google Scholar 

  57. K. V. Chuistov, Modulated Structures in Aging Alloys [in Russian], Naukova Dumka, Kiev (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 68–87, May, 1985.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lotkov, A.I., Grishkov, V.N. Titanium nickelide. Crystalline structure and phase transformations. Soviet Physics Journal 28, 390–403 (1985). https://doi.org/10.1007/BF00892272

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00892272

Keywords

Navigation