Skip to main content
Log in

The sodium cycle: A novel type of bacterial energetics

  • Mini-Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The progress of bioenergetic studies on the role of Na+ in bacteria is reviewed. Experiments performed over the past decade on several bacterial species of quite different taxonomic positions show that Na+ can, under certain conditions, substitute for H+ as the coupling ion. Various primary Na+ pumps (\(\Delta \bar \mu _{Na^ + } \) generators) are described, i.e., Na+-motive decarboxylases, NADH-quinone reductase, terminal oxidase, and ATPase. The\(\Delta \bar \mu _{Na^ + } \) formed is shown to be consumed by Na+ driven ATP-synthase, Na+ flagellar motor, numerous Na+, solute symporters, and the methanogenesis-linked reverse electron transfer system. InVibrio alginolyticus, it was found that\(\Delta \bar \mu _{Na^ + } \), generated by NADH-quinone reductase, can be utilized to support all three types of membrane-linked work, i.e., chemical (ATP synthesis), osmotic (Na+, solute symports), and mechanical (rotation of the flagellum). InPropionigenum modestum, circulation of Na+ proved to be the only mechanism of energy coupling. In other species studied, the Na+ cycle seems to coexist with the H+ cycle. For instance, inV. alginolyticus the initial and terminal steps of the respiratory chain are Na+ - and H+-motive, respectively, whereas ATP hydrolysis is competent in the uphill transfer of Na+ as well as of H+. In the alkalo- and halotolerantBacillus FTU, there are H+ - and Na+-motive terminal oxidases. Sometimes, the Na+-translocating enzyme strongly differs from its H+-translocating homolog. So, the Na+-motive and H+-motive NADH-quinone reductases are composed of different subunits and prosthetic groups. The H+-motive and Na+-motive terminal oxidases differ in that the former is ofaa 3-type and sensitive to micromolar cyanide whereas the latter is of another type and sensitive to millimolar cyanide. At the same time, both Na+ and H+ can be translocated by one and the sameP. modestum ATPase which is of the F0F1-type and sensitive to DCCD. The sodium cycle, i.e., a system composed of primary\(\Delta \bar \mu _{Na^ + } \) generator(s) and\(\Delta \bar \mu _{Na^ + } \) consumer(s), is already described in many species of marine aerobic and anaerobic eubacteria and archaebacteria belonging to the following genera:Vibrio, Bacillus, Alcaligenes, Alteromonas, Salmonella, Klebsiella, Propionigenum, Clostridium, Veilonella, Acidaminococcus, Streptococcus, Peptococcus, Exiguobacterium, Fusobacterium, Methanobacterium, Methanococcus, Methanosarcin, etc. Thus, the “sodium world” seems to occupy a rather extensive area in the biosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Mahrouq, H. A., Carper, S. W., and Lancaster, J. R. (1986).FEBS Lett. 207, 262–265.

    Google Scholar 

  • Arshavsky, V. Yu., Baryshev, V. A., Brown, I. I., Glagolev, A. N., and Skulachev, V. P. (1981).FEBS Lett. 133, 22–26.

    Google Scholar 

  • Bakeeva, L. E., Chumakov, K. M., Drachev, A. L., Metlina, A. L., and Skulachev, V. P. (1986).Biochim. Biophys. Acta 850, 466–472.

    Google Scholar 

  • Blaut, M., Müller, V., Fiebig, K., and Gottschalk, G. (1985).J. Bacteriol. 164, 95–101.

    Google Scholar 

  • Boyer, P. D. (1988).Trends Biochem. Sci. 13, 5–7.

    Google Scholar 

  • Brown, I. I., and Kim, Yu. V. (1982).Biokhimiya 47, 137–144 (Russian).

    Google Scholar 

  • Brown, I. I., Glagolev, A. N., Grinius, L. L., Skulachev, V. P., and Chetkauskayte, A. V. (1979).Dokl. Akad. Nauk SSSR 247, 971–974 (Russian).

    Google Scholar 

  • Brown, I. I., Galperin, M. Yu., Glagolev, A. N., and Skulachev, V. P. (1983).Eur. J. Biochem. 134, 345–349.

    Google Scholar 

  • Buckel, W. (1986).Methods Enzymol. 125, 547–558.

    Google Scholar 

  • Buckel, W., and Semmler, R. (1982).FEBS Lett. 148, 35–38.

    Google Scholar 

  • Carper, S. W., and Lancaster, J. R. (1986).FEBS Lett. 200, 177–180.

    Google Scholar 

  • Chernyak, B. V., and Kozlov, I. A. (1979).FEBS Lett. 104, 215–219.

    Google Scholar 

  • Chernyak, B. V., Dibrov, P. A., Glagolev, A. N., Sherman, M. Yu., and Skulachev, V. P. (1983).FEBS Lett. 164, 38–42.

    Google Scholar 

  • Crider, B. P., Carper, S. W., and Lancaster, J. R. (1985).Proc. Natl. Acad. Sci. USA 82, 6793–6796.

    Google Scholar 

  • Dibrov, P. A., Kostyrko, V. A., Lazarova, R. L., Skulachev, V. P., and Smirnova, I. A. (1986a).Biochim. Biophys. Acta 850, 449–457.

    Google Scholar 

  • Dibrov, P. A., Lazarova, R. L., Skulachev, V. P., and Verkhovskaya, M. L. (1986b).Biochim. Biophys. Acta 850, 458–465.

    Google Scholar 

  • Dibrov, P. A., Skulachev, V. P., Sokolov, M. V., and Verkhovskaya, M. L., (1988).FEBS Lett. 233, 355–358.

    Google Scholar 

  • Dibrov, P. A., Lazarova, R. L., Skulachev, V. P., and Verkhovskaya, M. L. (1989).J. Bioenerg. Biomembr. 21, 347–357.

    Google Scholar 

  • Dimroth, P. (1980).FEBS Lett. 122, 234–236.

    Google Scholar 

  • Dimroth, P. (1987).Microbiol. Rev. 51, 320–340.

    Google Scholar 

  • Dimroth, P., and Hilpert, W. (1984).16th FEBS Meet. Abstr. p. 71.

  • Dimroth, P., and Laubinger, W. (1987).Biol. Chem. Hoppe-Seyler 368, 547–548.

    Google Scholar 

  • Dmitriev, O. Yu., and Chernyak, B. V. (1988).FEBS Lett. 56, 79–82;Biokhimiya 53, 1380–1388 (Russian).

    Google Scholar 

  • Drachev, A. L., Markin, V. S., and Skulachev, V. P. (1985).Biochim. Biophys. Acta 811, 197–215.

    Google Scholar 

  • Frank, L., and Hopkins, I. (1969).J. Bacteriol. 100, 329–336.

    Google Scholar 

  • Glagolev, A. N., Dibrov, P. A., Skulachev, V. P., and Sherman, M. Yu. (1984).Biol. Membr. 1, 27–32 (Russian).

    Google Scholar 

  • Gottschalk, G. (1987).Biol. Chem. Hoppe-Seylers 368, 548.

    Google Scholar 

  • Grant, W. D. (1987).Microbiol. Sci. 4, 251–255.

    Google Scholar 

  • Guffanti, A. A., and Krulwich, T. A. (1988).J. Biol. Chem. 263, 14748–14752.

    Google Scholar 

  • Guffanti, A. A., Bornstein, R. F., and Krulwich, T. A. (1981).Biochim. Biophys. Acta 635, 619–630.

    Google Scholar 

  • Hara, Y., Yamada, J., and Nakao, M. (1986).J. Biochem. 99, 531–539.

    Google Scholar 

  • Harold, F. M., and Papineau, D. (1972).J. Membr. Biol. 8, 45–62.

    Google Scholar 

  • Hayashi, M., and Unemoto, T. (1986).FEBS Lett. 202, 327–330.

    Google Scholar 

  • Heefner, D. L., and Harold, F. M. (1982).Proc. Natl. Acad. Sci. USA 79, 2798–2802.

    Google Scholar 

  • Hilpert, W., and Dimroth, P. (1983).Eur. J. Biochem. 132, 579–587.

    Google Scholar 

  • Hilpert, W., Schink, B., and Dimroth, P. (1984).EMBO J. 3, 1665–1680.

    Google Scholar 

  • Hirota, N., and Imae, Y. (1983).J. Biol. Chem. 258, 10577–10581.

    Google Scholar 

  • Hirota, N., Kitada, M., and Imae, Y. (1981).FEBS Lett. 132, 278–280.

    Google Scholar 

  • Imae, Y., and Atsumi, T. (1989).J. Bioenerg. Biomembr. 21, 705–716.

    Google Scholar 

  • Imae, Y., Matsukura, H., and Kobayashi, S. (1986).Methods Enzymol. 125, 582–592.

    Google Scholar 

  • Kakinuma, Y., and Harold, F. M. (1985).J. Biol. Chem. 260, 2086–2091.

    Google Scholar 

  • Kakinuma, Y., and Unemoto, T. (1985).J. Bacteriol. 163, 1293–1295.

    Google Scholar 

  • Kakinuma, Y., and Igarashi, K. (1989).J. Bioenerg. Biomembr. 21, 679–692.

    Google Scholar 

  • Ken-Dror, S., Preger, R., and Avi-Dor, Y. (1986b).Arch. Biochem. Biophys. 244, 122–127.

    Google Scholar 

  • Ken-Dror, S., Lanyi, J. K., Schobert, B., Silver, B., and Avi-Dor, Y. (1986a).Arch. Biochem. Biophys. 244, 766–772.

    Google Scholar 

  • Ken-Dror, S., Preger, R., and Avi-Dor, Y. (1986b).Arch. Biochem. Biophys. 244, 122–127.

    Google Scholar 

  • Krulwich, T. A. (1983).Biochim. Biophys. Acta 726, 245–264.

    Google Scholar 

  • Krulwich, T. A., and Guffanti, A. A. (1989).J. Bioenerg. Biomembr. 21, 663–677.

    Google Scholar 

  • Lancaster, J. R., Rogers, K. R., Crider, B. P., Carper, S. W., and Al-Mahroug, H. A. (1986)EBEC 4, 69.

    Google Scholar 

  • Laubinger, W., and Dimroth, P. (1988).Biochemistry 27, 7531–7537.

    Google Scholar 

  • MacLeod, R. A., Wisse, G. A., and Stejskal, F. L. (1988).J. Bacteriol. 170, 4330–4337.

    Google Scholar 

  • Michels, M., and Bakker, E. P. (1985).J. Bacteriol. 161, 231–237.

    Google Scholar 

  • Mitchell, P. (1968).Chemiosmotic Coupling and Energy Transduction, Glynn Research, Bodmin.

    Google Scholar 

  • Mozhayeva, G. H., and Naumov, A. P. (1988).Pflügers Arch. 396, 163–173.

    Google Scholar 

  • Müller, V., Blaut, T., and Gottschalk, G. (1987).Eur. J. Biochem. 162, 461–466.

    Google Scholar 

  • Müller, V., Winner, C., and Gottschalk, G. (1988).Eur. J. Biochem. 178, 519–525.

    Google Scholar 

  • Padan, E., Zilberstein, D., and Schuldiner, S. (1981).Biochim. Biophys. Acta 650, 151–166.

    Google Scholar 

  • Polvani, C., and Blostein, R. (1988).J. Biol. Chem. 263, 16757–16763.

    Google Scholar 

  • Semeykina, A. L., Skulachev, V. P., Verkhovskaya, M. L., Bulygina, E. S., and Chumakov, K. M. (1989).Eur. J. Biochem. 183, 671–678.

    Google Scholar 

  • Skulachev, V. P. (1978a).Usp. Sovrem. Biol. 88, 163–180 (Russian).

    Google Scholar 

  • Skulachev, V. P. (1978b).FEBS Lett. 87, 171–179.

    Google Scholar 

  • Skulachev, V. P. (1979). InCation Flux across Biomembranes (Mukohata, Y., and Packer, L., eds.), Academic Press, New York, pp. 303–319.

    Google Scholar 

  • Skulachev, V. P. (1985).Eur. J. Biochem. 155, 199–208.

    Google Scholar 

  • Skulachev, V. P. (1987). InIon Transport in Prokaryotes (Rosen, B. P., and Silver, S., eds.), Academic Press, San Diego, pp. 131–164.

    Google Scholar 

  • Skulachev, V. P. (1988).Membrane Bioenergetics, Springer-Verlag, Berlin and Heidelberg.

    Google Scholar 

  • Skulachev, V. P. (1989).FEBS Lett. 250, 106–114.

    Google Scholar 

  • Smirnova, I. A., and Kostyrko, V. A. (1988).Biokhimiya 53, 1939–1949 (Russian).

    Google Scholar 

  • Smirnova, I. A., Vulfson, E. N., and Kostyrko, V. A. (1987a).FEBS Lett. 214, 343–346.

    Google Scholar 

  • Smirnova, I. A., Vulfson, E. N., and Kostyrko, V. A. (1987b).Biokhimiya 52, 1939–1947 (Russian).

    Google Scholar 

  • Sokolov, M. V., Dibrov, P. A., and Skulachev, V. P. (1988).Biol. Membr. 5, 878–880 (Russian).

    Google Scholar 

  • Sugiyama, S., Matsukura, H., and Imae, Y. (1985).FEBS Lett. 182, 265–268.

    Google Scholar 

  • Tokuda, H. (1989).J. Bioenerg. Biomembr. 21, 693–704.

    Google Scholar 

  • Tokuda, H., and Unemoto, T. (1981).Biochim. Biophys. Res. Commun. 102, 265–271.

    Google Scholar 

  • Tokuda, H., and Unemoto, T. (1982).J. Biol. Chem. 257, 10007–10014.

    Google Scholar 

  • Tokuda, H., Sugasawa, M., and Unemoto, T. (1982).J. Biol. Chem. 257, 788–794.

    Google Scholar 

  • Tsuchiya, T., and Shinoda, S. (1985).J. Bacteriol. 162, 794–798.

    Google Scholar 

  • Udagawa, T., Unemoto, T., and Tokuda, H. (1986).J. Biol. Chem. 261, 2616–2622.

    Google Scholar 

  • Unemoto, T., and Hayashi, M. (1989).J. Bioenerg. Biomembr. 21, 649–662.

    Google Scholar 

  • Vaghina, M. L., and Kostyrko, V. A. (1989).Biokhimiya 54, 1337–1344.

    Google Scholar 

  • Verkhovskaya, M. L., Dibrov, P. A., Lazarova, R. L., and Skulachev, V. P. (1987).Biokhimiya 52, 883–889 (Russian).

    Google Scholar 

  • Verkhovskaya, M. L., Semeykina, A. L., and Skulachev, V. P. (1988).Dokl. Akad. Nauk SSSR 303, 1501–1503 (Russian).

    Google Scholar 

  • Wagner, G., Hartmann, R., and Oesterhelt, D. (1978).Eur. J. Biochem. 89, 169–179.

    Google Scholar 

  • West, I. C., and Mitchell, P. (1974).Biochem. J. 144, 87–90.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skulachev, V.P. The sodium cycle: A novel type of bacterial energetics. J Bioenerg Biomembr 21, 635–647 (1989). https://doi.org/10.1007/BF00762683

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762683

Key Words

Navigation