Skip to main content
Log in

What information do inhibitors provide about the structure of the hydroquinone oxidation site of ubihydroquinone: Cytochromec oxidoreductase?

  • Minireview
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The Q cycle mechanism of thebc 1 complex requires two quinone reaction centers, the hydroquinone oxidation (QP) and the quinone reduction (QN) center. These sites can be distinguished by the specific binding of inhibitors to either of them. A substantial body of information about the hydroquinone oxidation site has been provided by the analysis of the binding of QP site inhibitors to thebc 1 complex in different redox states and to preparations depleted of lipid or protein components as well as by functional studies with mutantbc 1 complexes selected for resistance toward the inhibitors. The reaction site is formed by at least five protein segments of cytochromeb and parts of the iron-sulfur protein. At least two different binding sites for QP site inhibitors could be detected, one for the methoxyacrylate-type inhibitors binding predominantly to cytochromeb, the other for the chromone-type inhibitors and hydroxyquinones binding predominantly to the iron-sulfur protein. The interactions with the protein segments, between different protein segments, and between protein and ligands (substrate, inhibitors) are discussed in detail and a working model of the QP pocket is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Becker, W. F., von Jagow, G., Anke, T., and Steglich, W. (1981).FEBS Lett. 132, 329–333.

    Google Scholar 

  • Berden, J. A., and Slater, E. C. (1970).Biochim. Biophys. Acta 216, 237–249.

    Google Scholar 

  • Berden, J. A., and Slater, E. C. (1972).Biochim. Biophys. Acta 256, 199–215.

    Google Scholar 

  • Bowyer, J. R., Edwards, C. A., Ohnishi, T., and Trumpower, B. L., (1982).J. Biol. Chem. 257, 8321–8330.

    Google Scholar 

  • Brandt, U., and von Jagow, G. (1991a).FEBS Lett. 287, 215–218.

    Google Scholar 

  • Brandt, U., and von Jagow, G. (1991b).Eur. J. Biochem. 195, 163–170.

    Google Scholar 

  • Brandt, U., Schägger, H., and von Jagow, G. (1988).Eur. J. Biochem. 173, 499–506.

    Google Scholar 

  • Brandt, U., Haase, U., Schägger, H., and von Jagow, G. (1991).J. Biol. Chem. 266, 19958–19964.

    Google Scholar 

  • Daldal, F., Tokito, M. K., Davidson, E., and Faham, M. (1989).EMBO J. 8, 3951–3961.

    Google Scholar 

  • Ding, H., Robertson, D. E., Daldal, F., and Dutton, P. L. (1992).Biochemistry 31, 3144–3158.

    Google Scholar 

  • di Rago, J.-P., Copée, J.-Y., and Colson, A.-M. (1989).J. Biol. Chem. 264, 14543–14548.

    Google Scholar 

  • di Rago, J.-P., Netter, P., and Slonimski, P. P. (1990a).J. Biol. Chem. 265, 3332–3339.

    Google Scholar 

  • di Rago, J.-P., Netter, P., and Slonimski, P. P. (1990b).J. Biol. Chem. 265, 15750–15757.

    Google Scholar 

  • Geier, B. M., Schägger, H., Brandt, U., and von Jagow, G. (1992).Eur. J. Biochem. 208, 375–380.

    Google Scholar 

  • González-Halphen, D., Vazques-Acevedo, M., and Garcia-Ponce, B. (1991).J. Biol. Chem. 266, 3870–3876.

    Google Scholar 

  • Gu, L.-q., Yu, L., and Yu, C.-A. (1990).Biochim. Biophys. Acta 1015, 482–492.

    Google Scholar 

  • Howell, N. (1990).Biochemistry 29, 8970–8977.

    Google Scholar 

  • Howell, N., and Gilbert K. (1988).J. Mol. Biol. 203, 607–618.

    Google Scholar 

  • Link, T. A., Schägger, H., and von Jagow, G. (1986).FEBS Lett. 204, 9–15.

    Google Scholar 

  • Link, T. A., Hagen, W. R., Pierik, A. J., Assmann, C., and von Jagow, G. (1992).Eur. J. Biochem. 208, 685–691.

    Google Scholar 

  • Lorusso, M., Cocco, T., Sardanelli, A. M., Minuto, M., Bonomi, F., and Papa, S. (1991).Eur. J. Biochem. 197, 555–561.

    Google Scholar 

  • Matsuura, K., Bowyer, J. R., Ohnishi, T., and Dutton, P. L. (1983).J. Biol. Chem. 258, 1571–1579.

    Google Scholar 

  • Mitchell, P. (1976).J. Theor. Biol. 62, 327–367.

    Google Scholar 

  • Ohnishi, T., Brandt, U., and von Jagow, G. (1988).Eur. J. Biochem. 176, 385–389.

    Google Scholar 

  • Page, M. I., and Jencks, W. P. (1971).Proc. Natl. Acad. Sci. USA 68, 1678–1683.

    Google Scholar 

  • Prince, R. C., and Dutton, P. L. (1976).FEBS Lett. 65, 117–119.

    Google Scholar 

  • Rich, P. R., Jeal, A. E., Madgwick, S. A., and Moody, A. J. (1990).Biochim. Biophys. Acta Bio-Energ. 1018, 29–40.

    Google Scholar 

  • Robertson, D. E., Daldal, F., and Dutton, P. L. (1990).Biochemistry 29, 11249–11260.

    Google Scholar 

  • Saitoh, I., Miyoshi, H., Shimizu, R., and Iwamura, H. (1992).Eur. J. Biochem. 209, 73–79.

    Google Scholar 

  • Schägger, H., Hagen, Th., Roth, B., Brandt, U., Link, T.A., and von Jagow, G. (1990).Eur. J. Biochem. 190, 123–130.

    Google Scholar 

  • Schulz, G. E., and Schirmer, R. H. (1979).Principles of Protein Structure, Springer-Verlag, New York/Berlin/Heidelberg/Tokyo.

    Google Scholar 

  • Sinning, I., Michel, H., Mathis, P., and Rutherford, A. W. (1989).Biochemistry 28, 5544–5553.

    Google Scholar 

  • Thierbach, G., and Reichenbach, H., (1981).Biochim. Biophys. Acta 638, 282–289.

    Google Scholar 

  • Thierbach, G., Kunze, B., Reichenbach, H., and Höfle, G. (1984).Biochim. Biophys. Acta 765, 227–235.

    Google Scholar 

  • Tron, T., and Lemesle-Meunier, D. (1990).Curr. Genet. 18, 413–419.

    Google Scholar 

  • Tron, T., Crimi, M., Colson, A.-M., and Degli Esposti, M. (1991).Eur. J. Biochem. 199, 753–760.

    Google Scholar 

  • Trumpower, B. L. (1981).Biochim. Biophys. Acta 639, 129–155.

    Google Scholar 

  • Trumpower, B. L. (1990).J. Biol. Chem. 265, 11409–11412.

    Google Scholar 

  • Trumpower, B. L., and Haggerty, J. G. (1980).J. Bioenerg. Biomembr. 12, 151–164.

    Google Scholar 

  • van Ark, G., and Berden, J. A. (1977).Biochim. Biophys. Acta 459, 119–137.

    Google Scholar 

  • von Jagow, G., and Brandt, U. (1991).Electron and Proton Transfer in Chemistry and Biology (Müller, A., and Junge, W., eds.), Elsevier, Amsterdam.

    Google Scholar 

  • von Jagow, G., and Engel, W. D. (1981).FEBS Lett. 136, 19–24.

    Google Scholar 

  • von Jagow, G., and Link, T. A. (1986).Methods Enzymol. 126, 253–271.

    Google Scholar 

  • von Jagow, G., and Ohnishi, T. (1985).FEBS Lett. 185, 311–315.

    Google Scholar 

  • von Jagow, G., Ljungdahl, P. O., Graf, P., Ohnishi, T., and Trumpower, B. L. (1984).J. Biol. Chem. 259, 6318–6326.

    Google Scholar 

  • von Jagow, G., Link, T. A., and Ohnishi, T. (1986).J. Bioenerg. Biomembr. 18, 157–179.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Link, T.A., Haase, U., Brandt, U. et al. What information do inhibitors provide about the structure of the hydroquinone oxidation site of ubihydroquinone: Cytochromec oxidoreductase?. J Bioenerg Biomembr 25, 221–232 (1993). https://doi.org/10.1007/BF00762584

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762584

Key words

Navigation