Skip to main content
Log in

Closed spaces in cosmology

  • Research Articles
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

This paper deals with two aspects of relativistic cosmologies with closed spatial sections. These spacetimes are based on the theory of general relativity, and admit a foliation into space sectionsS(t), which are spacelike hypersurfaces satisfying the postulate of the closure of space: eachS(t) is a three-dimensional closed Riemannian manifold. The topics discussed are: (i) a comparison, previously obtained, between Thurston geometries and Bianchi-Kantowski-Sachs metrics for such three-manifolds is here clarified and developed; and (ii) the implications of global inhomogeneity for locally homogeneous three-spaces of constant curvature are analyzed from an observational viewpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ellis, G. F. R. (1971).Gen. Rel. Grav. 2, 7.

    Google Scholar 

  2. Fagundes, H. V. (1985).Phys. Rev. Lett. 54, 1200.

    Google Scholar 

  3. Bianchi, L. (1898).Mem. Mat. Fis. della Soc. Ital. Scienze 11, 267.

    Google Scholar 

  4. Kantowski, R., and Sachs, R. K. (1966).J. Math. Phys. 7, 443.

    Google Scholar 

  5. Thurston, W. P. (1982).Bull. Am. Math. Soc. (N.S.) 6, 357.

    Google Scholar 

  6. Ryan, M. P., Jr., and Shepley, L. C. (1975).Homogeneous Relatimstic Cosmologies (Princeton University Press, Princeton).

    Google Scholar 

  7. MacCallum, M. A. H. (1979). InGeneral Relativity: An Einstein Centenary Survey, S. W. Hawking and W. Israel, eds. (Cambridge University Press, Cambridge).

    Google Scholar 

  8. Kramer, D., Stephani, H., Herlt, E. and MacCallum, M. A. H. (1980). InExact Solutions of Einstein's Field Equations, E. Schmutzer, ed. (Cambridge University Press, Cambridge).

    Google Scholar 

  9. Scott, P. (1983).Bull. London Math. Soc. 15, 401.

    Google Scholar 

  10. Ellis, G. F. R. (1967).J. Math. Phys. 8, 1171.

    Google Scholar 

  11. Cartan, E. (1951).Leçons sur la Géometrie des Espaces de Riemann (Gauthier-Villars, Paris).

    Google Scholar 

  12. Grishchuk, L. P. (1968).Sov. Astron. AJ 11, 881.

    Google Scholar 

  13. Ellis, G. F. R., and Schreiber, G. (1986).Phys. Lett. A115, 97.

    Google Scholar 

  14. Wolf, J. A. (1967).Spaces of Constant Curvature (McGraw-Hill, New York).

    Google Scholar 

  15. Best, L. A. (1971).Can. J. Math. 23, 451.

    Google Scholar 

  16. Fagundes, H. V. (1989).Astrophys. J. 338, 618.

    Google Scholar 

  17. Weeks, J. (1985). Ph.d. thesis, Princeton University.

  18. Boothby, W. M. (1975).An Introduction to Differentiable Manifolds and Riemannian Geometry (Academic Press, New York).

    Google Scholar 

  19. Selfert, H., and Threlfall, W. (1980).A Textbook of Topology, J. S. Birman and J. Elsner, eds. (English transl., Academic Press, New York).

    Google Scholar 

  20. Riley, R. (1983).Mathematics of Computation 40, 607.

    Google Scholar 

  21. Fagundes, H. V., and Wichoski, U. F. (1987).Astrophys. J. Lett. 332, L5.

    Google Scholar 

  22. Fagundes, H. V. (1986). InProceedings of the IV Marcel Grossmann meeting on General Relativity, Rome, R. Ruffini, ed. (Elsevier, Amsterdam).

    Google Scholar 

  23. Hawking, S. W., and Ellis, G. F. R. (1973).The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge).

    Google Scholar 

  24. Heller, M., Klimek, Z., and Rudnicki, K. (1974). InConfrontation of Cosmological Theories with Observational Data, M. S. Longair, ed. (D. Reidel, Dordrecht).

    Google Scholar 

  25. Fagundes, H. V. (1983).Phys. Rev. Lett. 51, 517.

    Google Scholar 

  26. Sokolov, D. D., and Shvartsman, V. F. (1974).Sov. Phys. JETP 39, 196.

    Google Scholar 

  27. Penrose, R., and Rindler, W. (1984).Spinors and Space-Time (Cambridge University Press, Cambridge), vol. I.

    Google Scholar 

  28. Geroch, J. (1970).J. Math. Phys. 11, 343.

    Google Scholar 

  29. Avis, S. J., and Isham, C. J. (1980).Comm. Math. Phys. 72, 103.

    Google Scholar 

  30. Rodrigues, W. A., Jr., and Figueiredo, V. L. (1990).Int. J. Theor. Phys. 29, 451.

    Google Scholar 

  31. Berger, B. R. (1974).Ann. Phys. (N.Y.) 83, 458.

    Google Scholar 

  32. Hawking, S. W. (1984).Nucl. Phys. B 239, 257.

    Google Scholar 

  33. Zel′dovich, Y. B., and Starobinskii, A. A. (1984).Sov. Astron. Letters 10, 135.

    Google Scholar 

  34. Fagundes, H. V. (1989).Rev. Bras. Fis. 19, 27.

    Google Scholar 

  35. Goncharov, Y. P., and Bytsenko, A. A. (1989).Astrophysics 27, 422.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fagundes, H.V. Closed spaces in cosmology. Gen Relat Gravit 24, 199–217 (1992). https://doi.org/10.1007/BF00756787

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00756787

Keywords

Navigation