Skip to main content
Log in

Locality, Bell's theorem, and quantum mechanics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Classical relativistic physics assumes that spatially separated events cannot influence one another (“locality”) and that values may be assigned to quantities independently of whether or not they are actually measured (“realism”). These assumptions have consequences—the Bell inequalities—that are sometimes in disagreement with experiment and with the predictions of quantum mechanics. It has been argued that, even if realism is not assumed, the violation of the Bell inequalities implies nonlocality—and hence that radical changes are necessary in the foundations of physics. We show that this conclusion does not follow unless the locality hypothesis is strengthened in an implausible manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. Jammer,The Philosophy of Quantum Mechanics (Wiley, New York, 1974), p. 204.

    Google Scholar 

  2. F. J. Belinfante,A Survey of Hidden-Variables Theories (Pergamon, Oxford, 1973).

    Google Scholar 

  3. E. P. Wigner, inThe Scientist Speculates, I. J. Good, ed. (Heinemann, London, 1962), p. 284.

    Google Scholar 

  4. E. Schroedinger,What is Life? (Cambridge University Press, Cambridge, 1944).

    Google Scholar 

  5. E. Schroedinger,Mind and Matter (Cambridge University Press, Cambridge, 1959).

    Google Scholar 

  6. E. Schroedinger,My View of the World (Cambridge University Press, Cambridge, 1964).

    Google Scholar 

  7. L. Bass,Hermathena No. 112, 52 (1971).

  8. J. S. Bell,Physics 1, 195 (1964).

    Google Scholar 

  9. J. F. Clauser and A. Shimony,Rep. Prog. Phys. 41, 1881 (1978).

    Google Scholar 

  10. A. Aspect, J. Dalibard, and G. Roger,Phys. Rev. Lett. 49, 1804 (1982).

    Google Scholar 

  11. H. P. Stapp,Phys. Rev. D 3, 1303 (1971).

    Google Scholar 

  12. H. P. Stapp,Phys. Rev. Lett. 49, 1470 (1982).

    Google Scholar 

  13. H. P. Stapp, Berkeley Preprint No. LBL-16482 (1983).

  14. G. Zukav,The Dancing Wu Li Masters (Morrow, New York, 1979).

    Google Scholar 

  15. D. Bohm,Quantum Theory (Prentice-Hall, New Jersey, 1951), p. 611.

    Google Scholar 

  16. D. Bohm,Wholeness and the Implicate Order (Routledge, London, 1980).

    Google Scholar 

  17. A. Einstein, B. Podolsky, and N. Rosen,Phys. Rev. 47, 777 (1935).

    Google Scholar 

  18. P. Rastall,Phys. Lett. A 86, 85 (1981).

    Google Scholar 

  19. P. Rastall,Phys. Lett. A 87, 279 (1982).

    Google Scholar 

  20. P. Rastall,Found. Phys. 13, 555 (1983).

    Google Scholar 

  21. A. Fine,Phys. Rev. Lett. 48, 291 (1982).

    Google Scholar 

  22. P. H. Eberhard,Nuovo Cimento B 38, 75 (1977).

    Google Scholar 

  23. P. H. Eberhard,Nuovo Cimento B 46, 392 (1978).

    Google Scholar 

  24. P. H. Eberhard,Phys. Rev. Lett. 49, 1474 (1982).

    Google Scholar 

  25. P. A. Moldauer,Phys. Rev. Lett. 50, 701 (1983).

    Google Scholar 

  26. Y. Aharonov and T. Kaufherr,Phys. Rev. D 30, 368 (1984).

    Google Scholar 

  27. N. Herbert,Found. Phys. 12, 1171 (1982).

    Google Scholar 

  28. R. G. Jahn,Proc. IEEE 70, 136 (1982).

    Google Scholar 

  29. H. Schmidt,Found. Phys. 12, 565 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rastall, P. Locality, Bell's theorem, and quantum mechanics. Found Phys 15, 963–972 (1985). https://doi.org/10.1007/BF00739036

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00739036

Keywords

Navigation