Skip to main content
Log in

Summary

Using the monotetrazolium salt MTT, with Nitro-BT for control and comparison, the following enzyme systems were studied in the central and peripheral nervous system: DPNH and TPNH diaphorases (tetrazolium reductases), lactate, isocitrate, succinate, malate, β-hydroxybutyrate, glucose-6-phosphate and (mitochondrial) α-glycerophosphate dehydrogenases.

In peripheral nerve the strongest oxidative enzyme activity was in the unmyelinated nerve fibres, with a weaker reaction in the axis cylinders of myelinated fibres. The myelin sheaths were devoid of activity.

In spinal ganglia the different cells showed high but uneven activity and with some enzymes the cytoplasmic distribution was confined to small regions of the cell. These were shown to correspond with the localization of strongly autofluorescent flavoproteins.

In the central nervous system high metabolic activity was present in putamen, pallidum, and in Ammon's horn, with an even diffuse activity throughout the grey matter, differing from layer to layer. Activity of glial cells was low and uneven. This finding is in contrast to results obtained, by ourselves and by other authors, with Nitro-BT as final electron acceptor.

With the TPNH diaphorase reaction a number of solitary hyperactive cells were noted in the cortex, striatum, putamen and pallidum. The function of these cells is unknown, but we postulate that they may act as regulators.

Comparison with biochemical and microassay procedures shows, in general, good agreement with our histochemical results.

Zusammenfassung

Dehydrogenasen in Nervensystem (DPNH Tetrazolium Reductase (diaphorase); TPNH Tetrazolium Reductase (diaphorase); Lactat-, Isocitrat-, Succinat-, Malat-, β-Hydroxybutyrat-, α-Glycerophosphat- und Glucose-6-phosphatdehydrogenase) wurden mit dem Monotetrazoliumsalz MTT untersucht. Gegenfärbungen zur genauen Orientierung konnten angewendet werden. Es ergab sich bei unterschiedlicher Reaktionsintensität für die einzelnen Enzyme folgendes:

  1. a)

    Peripherer Nerv. Starke Reaktion in der unmyelinierten Nervenfaser, schwächere im Achsenzylinder der myelinierten Faser, keine Aktivität im Myelin. Die Schwannschen Zellen reagieren relativ schwach oder nicht.

  2. b)

    Spinalganglion. Die verschiedenen Zellen zeigen hohe, aber unterschiedliche Enzymkonzentration, die im Cytoplasma nicht immer gleichmäßig verteilt ist. Das unterschiedliche Verteilungsmuster entspricht dem der fluorescenzmikroskopisch untersuchten Flavoproteine.

  3. c)

    Zentralnervensystem. Starke Intensitätsunterschiede in den einzelnen grauen Regionen und Kerngebieten, wobei Nervenzellen und deren Fortsätze durch ihren hohen Dehydrogenasegehalt auffallen. Eine Lokalisation der α-Glycerophosphatdehydrogenase im Achsenzylinder des Zentralnervensystems wurde beobachtet. — Der Enzymgehalt der Neuroglia ist nur gering. — Solitäre hyperaktive Zellen, die ohne erkennbare Zuordnung in den grauen Regionen des Gehirnes liegen, wurden beschrieben. — Das Ependym ist ein stoffwechselmäßig hochaktives Organ.

  4. d)

    Das Enzym der α-Glycerophosphatdehydrogenase zeigt durch seine Konzentration in den Kapselzellen um die Spinalganglienzellen und in den Satelliten um die Neurone des Rückenmarkes eine ungewöhnliche Verteilung.

Die Ergebnisse werden diskutiert und mit biochemischen Untersuchungen verglichen. Dabei ergeben sich Übereinstimmungen, aber auch Diskrepanzen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bücher, Th., u.M. Klingenberg: Wege des Wasserstoffs in der lebendigen Organisation. Angew. Chem.70, 552–570 (1958).

    Google Scholar 

  • Buell, M. V., O. H. Lowry, N. R. Roberts, M.-L. W. Chang andJ. I. Kapphahn: The quantitative histochemistry of brain. V. Enzymes of glucose metabolism. J. biol. Chem.232, 979–993 (1960.)

    Google Scholar 

  • Chason, J. L., andA. G. E. Pearse: Phenazine methosulphate and nicotinamide in the histochemical demonstration of dehydrogenases in rat brain. J. Neurochem.6, 259–266 (1961)

    Google Scholar 

  • Friede, R. L.: Histochemical investigations on succinic dehydrogenase in the central nervous system. I. The postnatal development of the rat brain. J. Neurochem.4, 101–110 (1959).

    Google Scholar 

  • —— Histochemical investigations on succinic dehydrogenase in the central nervous system. II. Atlas of the medulla oblongata of the guinea pig. J. Neurochem.4, 111–123 (1959).

    Google Scholar 

  • Friede, R. L.: Histochemical investigations on succinic dehydrogenase in the central nervous system. III. Atlas of the midbrain of the guinea pig, including pons and cerebellum. J. Neurochem.4, 290–303 (1959).

    Google Scholar 

  • —— Histochemical investigations on succinic dehydrogenase in the central nervous system. IV. A histochemical mapping of the cerebral cortex of the guinea pig. J. Neurochem.5, 156–171 (1960).

    Google Scholar 

  • —— Histochemical investigations on succinic dehydrogenase in the central nervous system. V. The diencephalon and basal telencephalic centres in the guinea pig. J. Neurochem.6, 190–199 (1961).

    Google Scholar 

  • Hess, R., andA. G. E. Pearse: 1961, Exp. Cell Research, in Press.

  • Hydén, H., andA. Pigon: A cytophysiological study of the functional relationship between oligodendroglial cells and nerve cells of Deiters' nucleus. J. Neurochem.6, 57–72 (1960).

    Google Scholar 

  • Lowry, O. H.: Enzyme concentrations in individual nerve cell bodies. In: Metabolism of the nervous system, edit. byD. Richter, p. 323–328. London: Pergamon Press 1957.

    Google Scholar 

  • Pearse, A. G. E.: Intracellular localization of dehydrogenase systems using monotetrazolium salts and metal chelation of their formazans. J. Histochem. Cytochem.5, 515–527 (1957).

    Google Scholar 

  • —— Histochemistry theoretical and applied. London: Churchill 1960.

    Google Scholar 

  • ——, andR. Hess: Substantivity and other factors responsible for formazan patterns in dehydrogenase histochemistry. Experientia (Basel)17, 136–141 (1961).

    Google Scholar 

  • Pope, A., H. H. Hess, J. R. Ware andR. H. Thomson: Intralaminar distribution of cytochrome oxydase and DPN in rat cerebral cortex. J. Neurophysiol.19, 259–270 (1956).

    Google Scholar 

  • Robins, E.: The chemical composition of central tracts and of the nerve cell bodies. J. Histochem. Cytochem.8, 431–436 (1960).

    Google Scholar 

  • —— andD. E. Smith: Microdetermination of α-keto acids with special reference to malic, lactic, and glutamic dehydrogenases in brain. J. biol. Chem.218, 897–909 (1956).

    Google Scholar 

  • ——, andD. E. Smith: A quantitative histochemical study of eight enzymes of the cerebellar cortex and subjacent white matter in the monkey. Metabolic and toxic diseases of the nervous system. Res. Publ. Ass. nerv. ment. Dis.32, 305–327 (1953).

    Google Scholar 

  • —— —— andR. E. McCaman: The quantitative histochemistry of the cerebral cortex. II. Architectonic distribution of nine enzymes in the motor and visual cortices. J. Neurochem.1, 68–76 (1956).

    Google Scholar 

  • Romanul, F. C. A., andR. B. Cohen: A histochemical study of dehydrogenases in the central and peripheral nervous systems. J. Neuropath. exp. Neurol.19, 135–136 (1960).

    Google Scholar 

  • Samorajski, T.: The application of diphosphoridine nucleotide diaphorase methods in a study of dorsal ganglia and spinal cord. J. Neurochem.5, 349–353 (1960).

    Google Scholar 

  • Sidman, R. L.: Localization of chemicals in histological sections of mammalian nervous system. J. Histochem. Cytochem.8, 412–418 (1960).

    Google Scholar 

  • Strominger, J. L., andO. H. Lowry: The quantitative histochemistry of brain. IV. Lactic, malic and glutamic dehydrogenases. J. biol. Chem.213, 635–646 (1955).

    Google Scholar 

  • Tewari, H. B., andG. H. Bourne: Neurokeratin network of the peripheral nerve fibre myelin sheath as a centre of metabolic activity. Nature (Lond.)186, 645–646 (1960).

    Google Scholar 

  • —— —— Histochemical localization of specific and non-specific cholinesterases and simple esterase in myelinated nerves. Exp. Cell Res.21, 245–248 (1960).

    Google Scholar 

  • Wolfgram, I., andA. S. Rose: The histochemical demonstration of dehydrogenases in neuroglia. Exp. Cell Res.17, 526–530 (1959).

    Google Scholar 

  • —— —— The histochemistry of neurokeratin in normal and degenerating sciatic nerve. Neurology (Minneap.)10, 365–371 (1960).

    Google Scholar 

  • Zimmermann, H., andA. G. E. Pearse: Limitations in the histochemical demonstration of pyridine nucleotide-linked dehydrogenases (“nothing dehydrogenase”). J. Histochem. Cytochem.7, 271–275 (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 7 Figures in the Text

Max Planck-Institut für Hirnforschung, Frankfurt a. M., Neuropathologische Abteilung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, E., Pearse, A.G.E. The fine localization of dehydrogenases in the nervous system. Histochemie 2, 266–282 (1961). https://doi.org/10.1007/BF00736504

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00736504

Keywords

Navigation