Skip to main content
Log in

From sea lemons to c-waves

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    This review of retinal pigment epithelial (RPE) physiology pays tribute to Anthony L. F. Gorman, who introduced the author to the giant neuron ofAnisodoris nobilis (the sea lemon) and cellular neurobiology.

  2. 2.

    The RPE is an epithelial monolayer with tight junctions, which controls the environment of the photoreceptor outer segments. The apical and basal membranes have different electrical properties and generate a standing potential across the eye.

  3. 3.

    The RPE helps maintain adhesion between the retina and the wall of the eye. Adhesion is weakened by cyanide, low pH or low calcium, but enhanced by ouabain or acetazolamide.

  4. 4.

    The RPE transports water from the subretinal space toward the choroid. This water movement is inhibited by hypoxia or cyanide but enhanced by ouabain or acetazolamide.

  5. 5.

    The c-wave of the electroretinogram is a composite of a cornea-positive wave produced by hyperpolarization of the apical RPE membrane and a cornea-negative wave produced by the Muller cells, both in response to the fall in extracellular potassium that follows illumination of the photoreceptors.

  6. 6.

    The “light response” of the standing potential is produced by depolarization of the basal membrane of the RPE.

  7. 7.

    These examples illustrate how principles of cellular neurophysiology can be applied to questions of clinical relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • deGuillebon, H., and Zauberman, H. (1972). Experimental Retinal detachment. Biophysical aspects of retinal peeling and stretching.Arch. Ophthalmol. 87545–548.

    Google Scholar 

  • deGuillebon, H., de la Tribonniere, M., and Pomerantzeff, O. (1971). Adhesion between retina and pigment epithelium. Measurement by peeling.Arch. Ophthalmol. 86679–684.

    Google Scholar 

  • Faber, D. S. (1969).Analysis of the Slow Transretinal Potentials in Response to Light, Ph.D. thesis, State University of New York at Buffalo, Buffalo.

    Google Scholar 

  • Frambach, D. A., and Marmor, M. F. (1982). The rate and route of fluid resorption from the subretinal space of the rabbit.Invest. Ophthalmol. Vis. Sci. 22292–302.

    Google Scholar 

  • Frambach, D. A., and Misfeldt, D. S. (1983). Furosemide-sensitive C1 transport in embyronic chicken retinal pigment epithelium.Am. J. Physiol. 244F679-F685.

    Google Scholar 

  • Griff, E. R., and Steinberg, R. H. (1982). Origin of the light peak: in vitro study ofGekko gekko.J. Physiol. (Lond.) 331637–652.

    Google Scholar 

  • Gorman, A. L. F., and Marmor, M. F. (1970a). Contributions of the sodium pump and ionic gradients to the membrane potential of molluscan neurone.J. Physiol. (Lond.) 210897–917.

    Google Scholar 

  • Gorman, A. L. F., and Marmor, M. F. (1970b). Temperature dependence of the sodium-potassium permeability ratio of a molluscan neurone.J. Physiol. (Lond.) 210919–931.

    Google Scholar 

  • Gorman, A. L. F., and Marmor, M. F. (1974a). Steady-state contribution of the Na + pump to the resting potential of a molluscan neurone.J. Physiol. (Lond.) 24235–48.

    Google Scholar 

  • Gorman, A. L. F., and Marmor, M. F. (1974b). Long-term effect of ouabain and Na+ pump inhibition on a neuronal membrane.J. Physiol. (Lond.) 24249–60.

    Google Scholar 

  • Hock, P. A., and Marmor, M. F. (1983). Variability of the human c-wave.Doc. Ophthalmol. Proc. Ser (in press).

  • Linsenmeier, R. A., and Steinberg, R. H. (1982). Origin and sensitivity of the light peak in the intact cat eye.J. Physiol. (Lond.) 331653–673.

    Google Scholar 

  • Lurie, M., and Marmor, M. F. (1980a). Analysis of the response properties and light-integrating characteristics of the c-wave in the rabbit eye.Exp. Eye Res. 31335–349.

    Google Scholar 

  • Lurie, M., and Marmor, M. F. (1980b). Similarities between the c-wave and slow PIII in the rabbit eye.Invest. Ophthalmol. Vis. Sci 191113–1117.

    Google Scholar 

  • Marmor, M. F. (1970). Anomalous rectification and electrogenic sodium transport in a molluscan neurone.Nature 261252–1253.

    Google Scholar 

  • Marmor, M. F. (1971a). The effects of temperature and ions on the current-voltage relation and electrical characteristics of a molluscan neurone.J. Physiol. (Lond.) 218573–598.

    Google Scholar 

  • Marmor, M. F. (1971b). The independence of electrogenic sodium transport and membrane potential in a molluscan neurone.J. Physiol. (Lond.) 218599–608.

    Google Scholar 

  • Marmor, M. F. (1975). The membrane of giant molluscan neurons: Electrophysiologic properties and the origin of the resting potential.Prog. Neurobiol. 5167–195.

    Google Scholar 

  • Marmor, M. F., and Gorman, A. L. F. (1970). Membrane potential as the sum of ionic and metabolic components.Science 16765–67.

    Google Scholar 

  • Marmor, M. F., and Hock, P. A. (1982). A practical method for c-wave recording in man.Doc. Ophthalmol. Proc. Ser. 3167–72.

    Google Scholar 

  • Marmor, M. F., and Lurie, M. (1979). Light-induced electrical responses of the pigment epithelium: Physiological properties and clinical significance of the c-wave, standing potential changes (EOG) and melanin response. InThe Retinal Pigment Epithelium (Zinn, K., and Marmor, M. F., Eds.), Harvard University Press, Cambridge, Mass., pp. 226–246.

    Google Scholar 

  • Marmor, M. F., and Maack, T. (1982a). Enhancement of retinal adhesion and subretinal fluid resorption by acetazolamide.Invest. Ophthalmol. Vis. Sci. 23121–124.

    Google Scholar 

  • Marmor, M. F., and Maack, T. (1982b). Local environment factors and retinal adhesion in the rabbit.Exp. Eye Res. 34727–733.

    Google Scholar 

  • Marmor, M. F., Abdul-Rahim, A. S., and Cohen, D. S. (1980). The effect of metabolic inhibitors on retinal adhesion and subretinal fluid resorption.Invest. Ophthalmol. Vis. Sci. 19893–903.

    Google Scholar 

  • Marmor, M. F., Porteus, M., Negi, A., and Immel, J. (1984). Retinal holes in experimental non-rhegmatogenous detachments.Current Eye Res. (in press).

  • Miller, S. S., and Steinberg, R. H. (1977). Active transport of ions across frog retinal pigment epithelium.Exp. Eye Res. 25235–248.

    Google Scholar 

  • Miller, S. S., Hughes, B. A., and Machen, T. E. (1982). Fluid transport across retinal pigment epithelium is inhibited by cyclic AMP.Proc. Natl. Acad. Sci. USA 792111–2115.

    Google Scholar 

  • Noell, W. K. (1953). Studies on the electrophysiology and metabolism of the retina. U.S.A.F. School of Aviation Medicine, Randolph Field, Texas, Project Number 21-1201-4.

  • Oakley, B., II (1977). Potassium and the photoreceptor-dependent pigment epithelial hyperpolarization.J. Gen. Physiol. 70405–425.

    Google Scholar 

  • Oakley, B., II, and Green, D. G. (1976). Correlation of light-induced changes in retinal extracellular potassium concentration with c-wave of the electroretinogram.J. Neurophysiol. 391117–1133.

    Google Scholar 

  • Steinberg, R. H. (1970). Intracellular responses to light from cat pigment epithelium: Origin of the electroretinogram c-wave.Nature 227728–730.

    Google Scholar 

  • Steinberg, R. H., and Miller, S. (1973). Aspects of electrolyte transport in frog pigment epithelium.Exp. Eye Res. 16365–372.

    Google Scholar 

  • Yonemura, D., and Kawasaki, K. (1979). New approaches to ophthalmic electrodiagnosis by retinal oscillatory potential, drug-induced responses from retinal pigment epithelium and cone potential.Doc. Ophthalmol. 48(1):163–222.

    Google Scholar 

  • Zauberman, H., and deGuillebon, H. (1972). Retinal traction in vivo and postmortem.Arch. Ophthalmol. 87549–554.

    Google Scholar 

  • Zinn, K., and Marmor, M. F. (1979).The Retinal Pigment Epithelium, Harvard University Press, Cambridge, Mass.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marmor, M.F. From sea lemons to c-waves. Cell Mol Neurobiol 3, 285–295 (1983). https://doi.org/10.1007/BF00734711

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00734711

Key words

Navigation