Skip to main content
Log in

The monomeric and dimeric mannose-binding proteins from the Orchidaceae speciesListera ovata andEpipactis helleborine: sequence homologies and differences in biological activities

  • Special Lectins Issue
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The Orchidaceae speciesListera ovata andEpipactis helleborine contain two types of mannose-binding proteins. Using a combination of affinity chromatography on mannose-Sepharose-4B and ion exchange chromatography on a Mono-S column eight different mannose-binding proteins were isolated from the leaves ofListera ovata. Whereas seven of these mannose-binding proteins have agglutination activity and occur as dimers composed of lectin subunits of 11–13 kDa, the eighth mannose-binding protein is a monomer of 14 kDa devoid of agglutination activity. Moreover, the monomeric mannose-binding protein does not react with an antiserum raised against the dimeric lectin and, in contrast to the lectins, is completely inactive when tested for antiretroviral activity against human immunodeficiency virus type 1 and type 2. Mannose-binding proteins with similar properties were also found in the leaves ofEpipactis helleborine. However, in contrast toListera only one lectin was found inEpipactis. Despite the obvious differences in molecular structure and biological activities molecular cloning of different mannose-binding proteins fromListera andEpipactis has shown that these proteins are related and some parts of the sequences show a high degree of sequence homology indicating that they have been conserved through evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EHMBP:

Epipactis helleborine mannose-binding protein

LOMBP:

Listera ovata mannose-binding protein

References

  1. Van Damme EJM, Allen AK, Peumans WJ (1987)FEBS Lett 215:140–4.

    Google Scholar 

  2. Van Damme EJM, Allen AK, Peumans WJ (1988)Physiol Plant 73:52–7.

    Google Scholar 

  3. Van Damme EJM, Goldstein IJ, Peumans WJ (1991)Phytochemistry 30:509–14.

    Google Scholar 

  4. Van Damme EJM, Allen AK, Peumans WJ (1987)Plant Physiol 85:566–9.

    Google Scholar 

  5. Van Damme EJM, Smeets K, Torrekens S, Van Leuven F, Peumans WJ (1994)Eur J Biochem 221:769–77.

    Google Scholar 

  6. Saito K, Komae A, Kakuta M, Van Damme EJM, Peumans WJ, Goldstein IJ, Misaki A (1993)Eur J Biochem 217:677–81.

    Google Scholar 

  7. Balzarini J, Schols D, Neyts J, Van Damme E, Peumans W, De Clercq E (1991)Antimicrob Agents Chemother 35:410–16.

    Google Scholar 

  8. Balzarini J, Neyts J, Schols D, Hosoya M, Van Damme E, Peumans W, De Clercq E (1992)Antiviral Res 18:191–207.

    Google Scholar 

  9. Popovic M, Sarngadharan MG, Read E, Gallo RC (1984)Science 224:497–500.

    Google Scholar 

  10. Clavel F, Guétard D, Brun-Vézinet F, Chamaret S, Rey M-A, Santos-Ferreira MO, Laurent AG, Dauget C, Katlama C, Rouzioux C, Klatzmann D, Champalimaud JL, Montagnier L (1986)Science 233:343–46.

    Google Scholar 

  11. Bradford MM (1976)Anal. Biochem. 72:248–54.

    Google Scholar 

  12. Laemmli UK (1970)Nature 227:680–5.

    Google Scholar 

  13. Van Damme EJM, Goldstein IJ, Vercammen G, Vuylsteke J, Peumans WJ (1992)Physiol Plant 86:245–52.

    Google Scholar 

  14. Van Damme EJM, Smeets K, Torrekens S, Van Leuven F, Goldstein IJ, Peumans WJ (1992)Eur J Biochem 206:413–20.

    Google Scholar 

  15. Balzarini J, Naesens L, Herdewijn P, Rosenberg I, Holy A, Pauwels R, Baba M, Johns DG, De Clercq E (1989)Proc Natl Acad Sci USA 86:332–6.

    Google Scholar 

  16. Balzarini J, Naesens L, Slachmuylders J, Niphuis H, Rosenberg I, Holy A, Schellekens H, De Clercq E (1991)AIDS 5:21–8.

    Google Scholar 

  17. Finkelstein RR, Crouch ML (1986)Plant Physiol 81:907–12.

    Google Scholar 

  18. Siflow CD, Hammett JR, Key JL (1979)Biochemistry 18:2725–31.

    Google Scholar 

  19. Wadsworth GJ, Redinbough MG, Scandalios JG (1988)Anal Biochem 172:279–83.

    Google Scholar 

  20. Van Damme EJM, Kaku H, Perini F, Goldstein IJ, Peeters B, Yagi F, Decock B, Peumans WJ (1991)Eur J Biochem 202:23–30.

    Google Scholar 

  21. Mierendorf RC, Pfeffer D (1987)Meth Enzymol 152:556–62.

    Google Scholar 

  22. Sanger F, Nicklen S, Coulson AR (1977)Proc Natl Acad Sci USA 74:5463–67.

    Google Scholar 

  23. Maniatis T, Fritsch EF, Sambrook J (1982)Molecular cloning: a laboratory manual. Cold Spring Harbor, New York, USA: Cold Spring Harbor Laboratory.

    Google Scholar 

  24. von Heijne G (1986)Nucleic Acids Res 11:4683–90.

    Google Scholar 

  25. Barondes SH (1988)TIBS 13:480–2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Note: The nucleotide sequences reported in this paper will appear in the Genbank/EMBL Data library with the accession numbers L18894, L18895 and U07787.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Damme, E.J.M., Balzarini, J., Smeets, K. et al. The monomeric and dimeric mannose-binding proteins from the Orchidaceae speciesListera ovata andEpipactis helleborine: sequence homologies and differences in biological activities. Glycoconjugate J 11, 321–332 (1994). https://doi.org/10.1007/BF00731205

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731205

Keywords

Navigation