Skip to main content
Log in

Spatial problems of the theory of cracks (a review)

2. The elastic and limit equilibrium of solids with cracks under force loading

  • Published:
Soviet materials science : a transl. of Fiziko-khimicheskaya mekhanika materialov / Academy of Sciences of the Ukrainian SSR Aims and scope

Abstract

The first investigation of the review [1] presented an analysis and synthesis of the basic mechanical concept and mathematical methodes used in solving three-dimensional problems of the theory of cracks. On the basic of these mechanical concepts and methodes many investigators have solved a number of spatial problems of the theory of cracks to which the second portion of the review is devoted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. V. V. Panasyuk, A. E. Andreikiv, and M. M. Stadnik, “Spatial problems of the theory of cracks (a review). Part 1. Basic mechanical concepts and mathematical methods in spatial problems of the theory of cracks,” Fiz.-Khim. Mekh. Mater., No. 4, 39–55 (1979).

    Google Scholar 

  2. R. A. Sack, “Extension of the Griffith theory of rupture to three dimensions,” Proc. Phys. Soc.,58, 729–736 (1946).

    Google Scholar 

  3. V. I. Mossakovskii, “The first basic problem of the theory of elasticity for a space with a flat round slit,” Prikl. Mat. Mekh.,19, No. 4, 441–452 (1955).

    Google Scholar 

  4. V. V. Panasyuk and A. E. Andreikiv, “The question of failure of a brittle body with a penny-shaped round crack,” Prikl. Mekhanika,3, No. 12, 28–33 (1967).

    Google Scholar 

  5. F. W. Smith, A. S. Kobayashi, and A. F. Emory, “Stress intensity factors for penny-shaped cracks,” Trans. ASME, Ser. E, J. Appl. Mech.,34, No. 4, 947–952 (1967).

    Google Scholar 

  6. J. Clarence Bell, “Stresses from variously loaded circular cracks,” J. Struct. Div., Proc. Am. Soc. Civ. Eng.,103, No. 2, 355–376 (1977).

    Google Scholar 

  7. V. I. Zhuravlev and A. D. Alekseev, “The criterion of failure of brittle rocks weakened by a crack with a variable shear load,” Fiz.-Tekh. Probl. Razrabotka Polezn. Iskopaemykh, No. 5, 55–65 (1972).

    Google Scholar 

  8. A. E. Andreikiv, “The shear of an unlimited elastic space weakened by a plane crack,” Dokl. Akad. Nauk UkrSSR, Ser. A, No. 7, 601–603 (1977).

    Google Scholar 

  9. J. R. Barber, “The penny-shaped crack in shear and related contact problems,” Int. J. Eng. Sci.,13 No. 9, 815–829 (1975).

    Google Scholar 

  10. L. M. Keer, “A note on shear and combined loading for a penny-shaped crack,” J. Mech. and Phys. Solids,14, No. 1, 1–6 (1966).

    Google Scholar 

  11. V. T. Dovnorovich, “The stressed and deformed state of a brittle half-space under the action of specified tangential displacements of the points of a round area of a boundary plane,” in: Reviews of Papers for the Conference on “Science and Technical Progress in Mechanical Engineering” [in Russian], Gomel', 1974, Minsk (1974), pp. 49–50.

  12. R. A. Westmann, “Asymmetric mixed boundary-value problems of the elastic half-space,” Trans. ASME,E32, No. 2, 411–417 (1965).

    Google Scholar 

  13. A. D. Dement'ev, “The influence of the disposition of external forces on the size of a penny-shaped crack,” Fiz.-Tekh. Probl. Razrabotka Polezn. Iskopaemykh, No. 6, 101–102 (1973).

    Google Scholar 

  14. P. Paris and J. Sih, “An analysis of the stressed state near a crack,” in: Applied Questions of Fracture Toughness [Russian translation], Mir, Moscow (1968), pp. 64–142.

    Google Scholar 

  15. Z. Bilek and F. Semela, “Beitrag zur Ausbreitung eines pfennigformingen Risses im spröden Körper,” Z. Angew Math. Mech.,51, No. 6, 487–489 (1971).

    Google Scholar 

  16. C. Atkinson, “An iterative scheme for solving problems relating to cracks opening under a displacementdependent internal stress,” Int. J. Fract. Mech.,6, No. 2, 193–197 (1970).

    Google Scholar 

  17. A. F. Emery and F. W. Smith, “Some basic properties of penny-shaped cracks,” Mathematika,13, No. 2, 172–180 (1966).

    Google Scholar 

  18. L. M. Keer, “Stress distribution at the edge of an equilibrium crack,” J. Mech. and Phys. Solids,12, No. 3, 149–163 (1964).

    Google Scholar 

  19. L. M. Keer, “Mixed boundary value problems for a penny-shaped cut,” J. Elast.,5, No. 2, 89–98 (1975).

    Google Scholar 

  20. I. N. Sneddon, “A note on the problem of the penny-shaped crack,” Proc. Cambridge Philos. Soc.,61, No. 2, 601–611 (1965).

    Google Scholar 

  21. I. N. Sneddon, “Transform solutions of crack problems in the theory of elasticity,” Z. Angew Math. Mech.,49, No. 1–2, 15–23 (1969).

    Google Scholar 

  22. I. Sneddon and J. Tweed, “The stress intensity factor for a penny-shaped crack in an elastic body under the action of symmetric body forces,” Int. J. Fract. Mech.,3, No. 4, 291–299 (1967).

    Google Scholar 

  23. L. M. Keer, “Nonaxisymmetric punch and crack problems for initially stressed bodies,” Quart. Appl. Math.,23, No. 2, 97–107 (1965).

    Google Scholar 

  24. H. D. Bui, “An integral equations method for solving the problem of a plane crack of arbitrary shape,” J. Mech. and Phys. Solids,25, No. 1, 29–39 (1977).

    Google Scholar 

  25. V. I. Mossakovskii and R. L. Mossakovskaya, “The strength of an elastic space weakened by a plane crack close to round,” Gidroaeromekh. Teoriya Uprugosti, No. 22, 56–74 (1977).

    Google Scholar 

  26. W. S. Blackburn and T. K. Hellen, “Calculation of stress intensity factors in three dimensions by finite element methods,” Int. J. Numer. Meth. Eng.,11, No. 2, 211–229 (1977).

    Google Scholar 

  27. J. T. Guidera and R. W. Lardner, “Penny-shaped cracks,” J. Elast.,5, No. 1, 59–73 (1975).

    Google Scholar 

  28. W. D. Collins, “Some axially symmetric stress distributions in elastic solids containing penny-shaped cracks. II. Cracks in solids under torsion,” Mathematika,9, No. 17, 25–37 (1962).

    Google Scholar 

  29. R. L. Salganik, “Longitudinal shear axially symmetric cracks,” Zh. Prikl. Mekh. Tekh. Fiz., No. 3, 77–80 (1962).

    Google Scholar 

  30. V. I. Mossakovakii and M. T. Rybka, “Generalizing the Griffith-Sneddon criterion for the case of an inhomogeneous body,” Prikl. Mat. Mekh.,28, No. 6, 1061–1069 (1964).

    Google Scholar 

  31. F. Erdogan and K. Arin, “A penny-shaped interface crack between an elastic layer and a half-space,” Int. J. Eng. Sci.,10, No. 2, 115–125 (1972).

    Google Scholar 

  32. M. Lowengrub and I. N. Sneddon, “The effects of internal pressure on a penny-shaped crack at the interface of two bonded dissimilar elastic half-spaces,” Int. J. Eng. Sci.,12, No. 5, 387–396 (1974).

    Google Scholar 

  33. D. V. Grilitskii and A. P. Poddubnyak, “The torsion of a two-layer elastic medium with a flat slit or a rigid inclusion,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 1, 85–93 (1975).

    Google Scholar 

  34. V. I. Rakitin, “A penny-shaped crack at the interface of a piezoelectric and a solid,” Tr. Mosk. Inst. Khim. Mashinostr., No. 56, 14–22 (1974).

    Google Scholar 

  35. V. I. Mossakovakii, P. Yu. Berkovich, and V. M. Rybka, “The composite axially symmetric problem of the theory of elasticity for a piece-by-piece homogeneous space with a round slit in the plane of the interface,” Dop. Akad. Nauk UkrSSR, Ser. A, No. 9, 812–816 (1978).

    Google Scholar 

  36. F. Erdogan, “Stress distribution in loaded dissimilar materials containing circular or ring-shaped cavities,” Trans. ASME,E32, No. 4, 829–836 (1965).

    Google Scholar 

  37. M. K. Kassir and A. M. Bregman, “The stress intensity factor for a penny-shaped crack between two dissimilar materials,” Trans. ASME,E39, No. 1, 308–310 (1972).

    Google Scholar 

  38. V. M. Vainshel'baum and R. V. Gol'dshtein, One Class of Composite Axially Symmetric Problems of the Theory of Elasticity for a Multilayer Medium [in Russian], Preprint No. 61, Inst. Probl. Mekh. Akad. Nauk SSSR, Moscow (1975).

    Google Scholar 

  39. V. M. Vainshel'baum and R. V. Gol'dshtein, “The axially symmetric problem of a crack on the interface of the layers in a multilayer medium,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 2, 130–143 (1976).

    Google Scholar 

  40. Bohuslav Novotný, “Some aspects of numerical analysis of a multilayer halfspace,” Acta Techn. C SAV,20, No. 4, 382–396 (1975).

    Google Scholar 

  41. K. Arin and F. Erdogan, “A penny-shaped crack in an elastic layer bonded to a dissimilar half space,” Int. J. Eng. Sci.,9, No. 2, 213–232 (1971).

    Google Scholar 

  42. V. M. Vainshel'baum, R. V. Gol'dshtein, and V. M. Entov, The Influence of a Penny-Shaped Cavity on the Stressed State of an Inhomogeneous Elastic Medium with a Plane Interface [in Russian], Preprint No. 44, Inst. Probl. Mekh. Akad. Nauk SSSR, Moscow (1974).

    Google Scholar 

  43. F. Erdogan, “Fracture problems in composite materials,” Eng. Fract. Mech., No. 4, 811–840 (1972).

    Google Scholar 

  44. L. M. Smelyanskaya and A. S. Tokar', “The strength of a composite layer weakened by a flat round crack,” Prikl. Mekh.,7, No. 10, 73–80 (1971).

    Google Scholar 

  45. M. Lowengrub and I. Sneddon, “The effect of a shear on a penny-shaped crack at the interface of an elastic half-space and a rigid foundation,” Int. J. Eng. Sci., No. 10, 899–913 (1972).

    Google Scholar 

  46. L. M. Keer, S. H. Chen, and Maria Comminou, “The interface penny-shaped crack reconsidered,” Int. J. Eng. Sci.,16, No. 10, 765–772 (1978).

    Google Scholar 

  47. Vladimir Weiss, “Vznik trhlin v disperzne viztuženém betonu a v přibuzných materiálech,” Stavebn. čas ČCSSR,19, No. 3–4, 289–304 (1971).

    Google Scholar 

  48. F. Erdogan and A. H. Pacella, “A penny-shaped crack in a filament-reinforced matrix. Part I. The filament model” Int. J. Solids Struct.,10, No. 7, 785–805 (1974).74).

    Google Scholar 

  49. A. H. Pacella and F. A. Erdogan, “A penny-shaped crack in a filament-reinforced matrix. Part II. The crack problem,” Int. J. Solids Struct.,10, No. 7, 807–819 (1974).

    Google Scholar 

  50. T. V. Narayanan and F. Erdogan, “A penny-shaped crack in a fiber-reinforced matrix,” Int. J. Solids Struct.,11, No. 12, 1315–1327 (1975).

    Google Scholar 

  51. N. V. Pal'tsun and A. K. Privarnikov, “The stressed state near a slit in a space with a variable modulus of elasticity,” Prikl. Mekh.,3, No. 9, 138–141 (1967).

    Google Scholar 

  52. V. I. Zhuravlev, “The contact problem of the theory of elasticity for an inhomogeneous medium and its application to the failure of solids,” in: Theoretical and Applied Mechanics. The Republic Inderdepartmental Subject Scientific and Technical Conference [in Russian], No. 6 (1975), pp. 40–50.

    Google Scholar 

  53. E. Deutsch, “The axially symmetric crack problem for an infinite elastic medium with transverse isotropy,” Arch. mech. stosowanej,16, No. 1, 65–80 (1964).

    Google Scholar 

  54. G. P. Zaitsev, “The question of the limit equilibrium of plates and bodies of brittle orthotropic materials with cracks,” Probl. Prochn., No. 8, 74–79 (1977).

    Google Scholar 

  55. W. T. Chen and R. P. Soni, “On a circular crack in a transversely isotropic elastic material under prescribed shear stress,” IBMJ Res. Developm.,9, No. 3, 192–195 (1965).

    Google Scholar 

  56. R, W. Lardner and G. E. Tupholme, “A note on arbitrarily loaded penny-shaped cracks in hexagonal crystals,” J. Elast.,6, No. 2, 221–224 (1976).

    Google Scholar 

  57. R. Ya. Suncheleev, “Elastic equilibrium of an unlimited transversely isotropic body weakened by an internal plane round notch,” Prikl. Mat. Mekh.,30, No. 3, 579–583 (1966).

    Google Scholar 

  58. E. Smith, “A note on the growth of a penny-shaped crack in a general uniform applied stress field,” Int. J. Fract. Mech.,7, No. 3, 339–342 (1971).

    Google Scholar 

  59. A. E. Andreikiv, “Determining the limiting loads for an unlimited body with an external round crack,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 3, 141–144 (1969).

    Google Scholar 

  60. V. V. Panasyuk, The Limit Equilibrium of Brittle Bodies with Cracks [in Russian], Naukova Dumka, Kiev (1968).

    Google Scholar 

  61. Ya. S. Uflyand, “The elastic equilibrium of an unlimited body weakened by an external round notch,” Prikl. Mat. Mekh.,23, No. 1, 101–108 (1959).

    Google Scholar 

  62. V. V. Panasyuk, “Determining the failure load for a body weakened by an external round crack,” in: Questions of the Mechanics of a Real Solid [in Russian], No. 1, Naukova Dumka, Kiev (1962), pp. 63–66.

    Google Scholar 

  63. M. Lowengrub and I. N. Sneddon, “The distribution of stress in the vicinity of an external crack in an infinite elastic solid,” Int. J. Eng. Sci.,3, No. 4, 451–460 (1965).

    Google Scholar 

  64. R. Ya. Suncheleev, “The deformation of an unlimited transversely isotropic body weakened by an external round slit,” Inzh. Zh. Mekh. Tverd. Tela, No. 3, 116–118 (1966).

    Google Scholar 

  65. V. V. Panasyuk, “One spatial problem of the theory of elasticity for an isotropic body with an elliptical crack,” Prikl. Mekh.,8, No. 3, 248–257 (1962).

    Google Scholar 

  66. G. R. Irwin, “The crack-extension force for a part-through crack in a plate,” Trans. ASME,E29, No. 4, 651–654 (1962).

    Google Scholar 

  67. R. C. Shah and A. S. Kobayashi, “The stress intensity factor for an elliptical crack under arbitrary normal loading,” Eng. Fract. Mech.,3, No. 1, 71–96 (1971).

    Google Scholar 

  68. M. K. Kassir and G. C. Sih, “Three-dimensional stress distribution around an elliptical crack under arbitrary loadings,” Trans. ASME,E33, No. 3, 601–611 (1966).

    Google Scholar 

  69. F. W. Smith and D. R. Sorensen, “The elliptical crack subjected to nonuniform shear loading,” Trans. ASME,E41, No. 2, 502–506 (1974).

    Google Scholar 

  70. Toshikazu Shibuya, “An infinite body containing a plane elliptical crack under the action of shear,” Bull. JSME,21, No. 153, 375–380 (1978).

    Google Scholar 

  71. G. C. Sih and B. C. Cha, “A fracture criterion for three-dimensional crack problems,” Eng. Fract.Mech.,6, No. 4, 699–723 (1974).

    Google Scholar 

  72. Yu. N. Podil'chuk, “A plane elliptical crack in an arbitrary uniform field of stresses,” Prikl. Mekh.,4, No. 8, 94–100 (1968).

    Google Scholar 

  73. L. Mirandy and B. Paul, “Stresses at the surface of a flat three-dimensional ellipsoidal cavity,” Trans. ASME, H98, No. 2, 164–172 (1976).

    Google Scholar 

  74. Toshikazu Shibuya, “Some boundary problems for an infinite body containing a flat elliptical crack,” Nihon Kikai Gakkai Rombunsyu, Trans. Jpn. Soc. Mech. Eng.,42, No. 364, 3718–3725 (1976).

    Google Scholar 

  75. V. I. Mossakovskii and L. R. Mossakovskaya, “One relationship in the theory of equilibrium of flat cracks,” in: Hydroaeromechanics and the Theory of Elasticity, Inter-university Scientific Collection [in Russian], No. 14 (1972), pp. 103–108.

    Google Scholar 

  76. M. K. Kassir and G. C. Sih, “Griffith's theory of brittle fracture in three dimensions,” Int. J. Eng. Sci.,5, No. 12, 899–918 (1967).

    Google Scholar 

  77. V. V. Panasyuk and A. E. Andreikiv, “The limit equilibrium condition of an unlimited brittle body with an arbitrarily oriented elliptical crack,” Fiz.-Khim. Mekh. Mater., No. 1, 116–118 (1969).

    Google Scholar 

  78. R. J. Hartranft and G. C. Sih, “Stress singularity for a crack with an arbitrary curved front,” Eng. Fract. Mech.,9, No. 3, 705–718 (1977).

    Google Scholar 

  79. W. T. Chen, “Some aspects of a flat elliptical crack under shear stress,” J. Math. and Phys.,45, No. 2, 213–223 (1966).

    Google Scholar 

  80. M. K. Kassir and G. C. Sih, “Three-dimensional stress around elliptical cracks in transversely isotropic solids,” Eng. Fract. Mech.,1, No. 2, 327–345 (1968).

    Google Scholar 

  81. J. R. Willis, “The stress field around an elliptical crack in an anisotropic elastic medium,” Int. J. Eng. Sci.,6, No. 5, 253–263 (1968).

    Google Scholar 

  82. I. A. Kunin, G. M. Mirenkova, and É. G. Sosnina, “An ellipsoidal crack and a needle in an anisotropic medium,” Prikl. Mat. Mekh.,37, No. 3, 524–533 (1973).

    Google Scholar 

  83. N. Laws, “A note on interaction energies associated with cracks in anisotropic solids,” Phil. Mag.,36, No. 2, 367–372 (1977).

    Google Scholar 

  84. M. K. Kassir, “On the problem of an external elliptical crack in an infinite solid,” Trans. ASME, E,35, No. 2, 422–424 (1968).

    Google Scholar 

  85. M. K. Kassir and G. C. Sih, “An external elliptical crack in an elastic solid,” Int. J. Fract. Mech.,4, No. 4, 347–356 (1968).

    Google Scholar 

  86. V. V. Panasyuk and A. E. Andreikiv, “The limit equilibrium of an unlimited brittle body weakened by an external crack,” Prikl. Mekh.,5, No. 1, 87–91 (1969).

    Google Scholar 

  87. A. E. Andreikiv, “The propagation of an external crack elliptical in plan view,” in: The First Republic Conference of Young Scientists on the Mechanics of a Deformed Solid (1969), Reviews of the Papers [in Russian] Inst. Mekhaniki Akad. Nauk UkrSSR, Kiev (1969), p. 6.

    Google Scholar 

  88. J. R. Willis, “The distribution of stress in an anisotropic elastic body containing an exterior crack,” Int. J. Eng. Sci., No. 7, 559–574 (1970).

    Google Scholar 

  89. M. K. Kassir, “A note on mixed boundary-value problems in nonhomogeneous elasticity,” J. Elast.,4, No. 4, 317–321 (1974).

    Google Scholar 

  90. V. S. Gubenko and I. F. Filimonov, “A plane circular notch in an elastic half-space, “Tr. Dnepropetr. Inst. Inzh. Zh.-d. Transp., No. 50, 165–168 (1964).

    Google Scholar 

  91. V. S. Gubenko, “One type of integral transformations,” Prikl. Mekh.,1, No. 4, 67–72 (1965).

    Google Scholar 

  92. V. T. Grinchenko and A. F. Ulitko, “The tension of an elastic half-space weakened by a ring crack,” Prikl. Mekh.,1, No. 10, 61–64 (1965).

    Google Scholar 

  93. B. I. Smetanin, “The question of tension of an elastic half-space containing a plane ring slit,” Prikl. Mat. Mekh.,32, No. 3, 458–462 (1968).

    Google Scholar 

  94. R. P. Kanwai and M. L. Pasha, “Axially symmetric stress distributions in elastic solids containing ringshaped cracks under torsion,” Trans. ASME,E41, No. 2, 516–517 (1974).

    Google Scholar 

  95. Toshikazu Shibuya, Takashi Koizumi, and Ichiro Nakahara, “The axially symmetric problem of torsion of an infinite body with a plane ring crack,” Nihon Kikai Gakkai Rombunsyu, Trans. Jpn. Soc. Mech. Eng.,41, No. 352, 3391–3397 (1975).

    Google Scholar 

  96. T. Hara, T. Shibuya, T. Koizurami, and I. Nakahara, “Asymmetric distribution of stresses in bending of an elastic solid containing a plane crack,” Nihon Kikai Gakkai Rombunsyu, Trans. Jpn. Soc. Mech. Eng.,44, No. 379, 771–771 (1978).

    Google Scholar 

  97. M. M. Stadnik, “Failure of a three-dimensional brittle solid weakened by an internal plane crack,” Prikl. Mekh.,9, No. 4, 117–120 (1973).

    Google Scholar 

  98. M. Higuchi and Y. Imai, “The circumferential crack extension force in a normal-anisotropic elastic body,” Bull. ISME,15, No. 79, 21–24 (1975).

    Google Scholar 

  99. M. Kumar and A. Atsumi, “A pressurized annular crack in a transversely Isotropic medium,” Lett. Appl. Eng. Set.,4, No. 6, 443–455 (1976).

    Google Scholar 

  100. A. E. Andreikiv, V. V. Panasyuk, and M. M. Stadnik, “The failure of brittle bodies weakened by systems of cracks,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 3, 54–58 (1975).

    Google Scholar 

  101. V. V. Panasyuk and M. D. Dmitrakh, “Before the question of the kinetics of extension of an internal oval crack in a brittle body,” Visn. L'vivsk. Politekh. Inst., No. 66, 27–37 (1972).

    Google Scholar 

  102. N. D. Dmitrakh, “Determining the failure load for a brittle body with a plane oval crack,”Vestn. L'vovsk. Politekh. Inst., Dokl. Nauchn. Soobshch., No. 7, 74–77 (1976).

    Google Scholar 

  103. V. V. Panasyuk, “Some spatial problems of the theory of equilibrium cracks in a brittle body being deformed,” Zh. Prikl. Mekh. Tekh. Fiz., No. 6, 85–93 (1962).

    Google Scholar 

  104. V. V. Panasyuk, “The extension of a crack which in plan view has a shape close to round,” Dop. Akad. Nauk UkrSSR, No. 7, 891–895 (1962).

    Google Scholar 

  105. V. V. Panasyuk, “Some spatial problems of the theory of equilibrium of brittle bodies with a crack,” in: Questions of the Mechanics of a Real Solid [in Russian], No. 2, Naukova Dumka, Kiev (1964), pp. 3–26.

    Google Scholar 

  106. V. V. Panasyuk and N. D. Dmitrakh, “The limit equilibrium of a three-dimensional solid with an internal plane crack having in plan view the form of an oval,” Prikl. Mekh.,5, No. 5, 107–111 (1969).

    Google Scholar 

  107. M. D. Dmitrakh, “Determining the critical loads for a body with a macrocrack which in plan view has a form close to round,” Zbirnik Nauk. Robit Aspirantiv L'viv. Politekh. Inst., No. 5, 44–50 (1971).

    Google Scholar 

  108. R. V. Gol'dshtein, Kh. S. Kestenboim, and L. N. Savova, “Calculating the growth of some forms of plane cracks in three-dimensional brittle bodies,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 6, 89–95 (1972).

    Google Scholar 

  109. R. V. Gol'dshtein and V. M. Entov, “Variation determinations for the stress intensity factor on the contour of a normal rupture plane crack,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 3, 59–64 (1975).

    Google Scholar 

  110. Z. Bažant, “Three-dimensional harmonic functions near termination or intersection of gradient singularity lines: A general numerical method,” Int. J. Eng. Sci.,12, 221–243 (1974).

    Google Scholar 

  111. A. E. Andreikiv and M. M. Stadnik, “Propagation of a plane crack with a piece-by-piece smooth contour,” Prikl. Mekh., No. 10, 50–56 (1974).

    Google Scholar 

  112. A. Ya. Aleksandrov and B. M. Zinov'ev, “An approximate method of solution of plane and spatial problems of elasticity for bodies with reinforced elements and notches,” in: The Mechanics of Deformed Bodies and Structures [in Russian], Mashinostroenie, Moscow (1975), pp. 15–25.

    Google Scholar 

  113. John Weaver, “Three-dimensional crack analysis,” Int. J. Solids and Struct.,13, No. 4, 321–330 (1977).

    Google Scholar 

  114. R. V. Gol'dshtein, V. M. Entov, and A. F. Zazovskii, “The solution of composite boundary problems by a direct variation method,” in: Numerical Methods of the Mechanics of a Continuum [in Russian], Vol. 7, No. 5, Novosibirsk (1976), pp. 5–13.

    Google Scholar 

  115. R. C. Shah and A. S. Kobayashi, “On the parabolic crack in an elastic solid,” Eng. Fract. Mech.,1, No. 2, 309–325 (1968).

    Google Scholar 

  116. M. K. Kassir, “The distribution of stress around a flat parabolic crack in an elastic solid,” Eng. Fract. Mech.,2, No. 4, 373–385 (1971).

    Google Scholar 

  117. L. T. Boiko, V. A. Zyuzin, and V. I. Mossakovskii, “A spherical notch in an elastic space,” Dokl. Akad. Nauk SSSR,181, No. 6, 1357–1360 (1968).

    Google Scholar 

  118. N. L. Prokhorova and Yu. I. Solov'ev, “The axially symmetric problem for an elastic space with a spherical notch,” Prikl. Mat. Mekh.,40, No. 4, 692–698 (1976).

    Google Scholar 

  119. L. T. Boiko, “A spherical notch in an elastic space under the action of internal pressure,” Prikl. Mekh.,8, No. 4, 54–61 (1972).

    Google Scholar 

  120. A. A. Kapshivyi and N. V. Nogin, “Solution of the basic problems of the axially symmetric theory of elasticity for a space with a spherical notch,” Mat. Fiz. Resp. Mezhved. Sb., No. 9, 38–47 (1971).

    Google Scholar 

  121. V. A. Zyuzin and S. A. Smirnov, “Solution of the problem of a spherical notch in an elastic space,” Dokl. Akad. Nauk UkrSSR, Ser. A, No. 5, 427–430 (1977).

    Google Scholar 

  122. Ya. S. Uflyand and E. S. Melenevskaya, “The torsion of an elastic space weakened by a spherical notch,” Prikl. Mekh.,7, No. 2, 111–114 (1971).

    Google Scholar 

  123. M. A. Martynenko and A. F. Ulitko, “The stressed state close to the tip of a spherical notch in an unlimited elastic medium,” Prikl. Mekh.,14, No. 9, 15–23 (1978).

    Google Scholar 

  124. V. Kh. Sirunyan, “A cylindrical crack in an elastic space,” ïzv. Akad. Nauk ArmSSR, Mekh.,27, No. 4, 3–24 (1974).

    Google Scholar 

  125. Ya. V. Shlyapoberskii, “An asymptotic solution of the spatial problem of equilibrium of an elastic body with a notch,” Prikl. Mat. Mekh.,42, No. 3, 532–539 (1978).

    Google Scholar 

  126. Tadahiko Kawai, “A singular solution of a general surface crack problem,” Seisen Ken Kyn, Mon, J. Inst. Ind. Sci., Univ. Tokyo,28, No. 2, 74–77 (1976).

    Google Scholar 

  127. Tadahiko Kawai and Yoshinobu Fujitani, “Analysis of three-dimensional surface crack problems byboundary in integral method,” Seisen Ken Kyn Mon, J. Inst. Ind. Sci., Univ. Tokyo,28, No. 2, 70–73 (1976).

    Google Scholar 

  128. N. M. Stoyan, “Another basic axially symmetric problem for an elastic space with a hyperbolic notch,” Visn. Kiivsk. Univ., Mat., Mekh., No. 20, 117–123 (1978).

    Google Scholar 

  129. Yu. A. Borshch and A. V. Stezhko, “The compression of a space weakened by a round axially symmetric slit,” in: The Resistance of Materials and the Theory of Structures. Republic Interdepartmental Scientific and Technical Collection [in Russian], No. 22 (1974), pp. 29–34.

    Google Scholar 

  130. Yu. A. Borshch and N. G. Goncharev, “The compression of a space weakened by an external axially symmetric slit,” in: Mathematical Physics. Republic Interdepartmental Collection [in Russian], No. 18 (1975), pp. 65–69.

    Google Scholar 

  131. N. N. Lebedev and Ya. S. Uflyand, “The spatial problem of the theory of elasticity for an unlimited body weakened by two flat round cracks,” Tr. Leningr. Politekh. Inst., No. 210, 39–49 (1960).

    Google Scholar 

  132. W. D. Collins, “Some axially symmetric stress distributions in elastic solids containing penny-shaped cracks. I. Cracks in an infinite solid and a thick plate,” Proc. Roy. Soc.,A266, No. 1326, 359–386 (1962).

    Google Scholar 

  133. Yu. N. Kuz'min, “The elastic equilibrium of a space containing periodically distributed round slits,” Inzh. Zh. Mekh. Tverd. Tela, No. 2, 140–143 (1966).

    Google Scholar 

  134. Yu. N. Kuz'min, “The axially symmetric problem of the theory of elasticity for an unlimited body having two coaxial slits of different radiuses,” Inzh. Zh. Mekh. Tverd. Tela, No. 6, 129–135 (1966).

    Google Scholar 

  135. M. L. Pasha, “Axially symmetric stress distributions in elastic solids containing penny-shaped cracks under torsion,” Trans. ASME,E42, No. 4, 896–897 (1975).

    Google Scholar 

  136. A. A. Kapshivyi and N. P. Kopystyra, “Axially symmetric problems for an elastic space with a system of coaxial round notches,” Prikl. Mekh.,10, No. 10, 113–119 (1974).

    Google Scholar 

  137. A. A. Kapshivyi and N. P. Kopystyra, “The first basic axially symmetric problem for an elastic space with two round coaxial notches,” in: Calculation and Applied Mathematics. Inderdepartment Scientific Collection [in Russian], No. 33 (1977), pp. 3–10.

    Google Scholar 

  138. A. E. Andreikiv and V. V. Panasyuk, “The limit equilibrium of a brittle body weakened by a system of axially symmetric external cracks,” Fiz.-Khim. Mekh. Mater., No. 3, 338–344 (1969).

    Google Scholar 

  139. V. V. Panasyuk and O. É. Andreikiv, “The boundary equilibrium of a brittle body weakened by two external cracks,” Dop. Akad. Nauk UkrRSR, Ser. A, No. 9, 823–827 (1969).

    Google Scholar 

  140. I. V. Kim, “The elastic equilibrium of an unlimited orthotropic space weakened by two elliptical notches,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 2, 74–80 (1971).

    Google Scholar 

  141. Ya. S. Uflyand, Integral Transformations in Problems of the Theory of Elasticity [in Russian], Nauka, Moscow-Leningrad (1968).

    Google Scholar 

  142. Ya. S. Uflyand, “The torsion of a brittle body containing spherical notches,” in: Successes in the Mechanics of Media Being Deformed [in Russian], Nauka, Moscow (1975), pp. 545–550.

    Google Scholar 

  143. A. E. Andreikiv and V. V. Panasyuk, “The elastic equilibrium of a body weakened by a system of round cracks located in a single plane,” Dokl. Akad. Nauk SSSR,197, No. 2, 312–314 (1971).

    Google Scholar 

  144. A. E. Andreikiv and V. V. Panasyuk, “The composition problem of the theory of elasticity for a halfspace with round interfaces of the boundary conditions,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 3, 26–32 (1972).

    Google Scholar 

  145. A. E. Andreikiv, V. V. Panasyuk, and M. M. Stadnik, “The failure of brittle prismatic beams weakened by round internal cracks,” Probl. Prochn., No. 10, 37–41 (1972).

    Google Scholar 

  146. M. M. Stadnik and V. P. Silovanyuk, “The tension of prismatic beams with round cracks,” Fiz.-Khim. Mekh. Mater., No. 6, 84–88 (1978).

    Google Scholar 

  147. A. E. Andreikiv and M. M. Stadnik, “The bending of a rectangular brittle beam weakened by a round internal crack,” Fiz.-Khim. Mekh.Mater., No. 4, 77–79 (1972).

    Google Scholar 

  148. F. W. Smith and M. J. Alavi, “Stress intensity factors for a penny-shaped crack in a half-space,” Eng. Fract. Mech.,3, No. 3, 241–254 (1971).

    Google Scholar 

  149. A. E. Atidreikiv, V. V. Panasyuk, and M. M. Stadnik, “The question of determining the stress intensity factors in solids with cracks,” Probl. Prochn., No. 3, 45–50 (1974).

    Google Scholar 

  150. M. M. Stadnik, “Determining the stress intensity factor in bending of a beam with a round crack,” Fiz.-Khim. Mekh. Mater., No. 3, 114–115 (1979).

    Google Scholar 

  151. G. N. Savin, Yu. N. Podil'chuk, and A. P. Zhurba, “Bending of an elastic beam with a crack elliptical in plan view,” Prikl. Mekh.,7, No. 8, 44–52 (1971).

    Google Scholar 

  152. W. D. Collins, “Some complanar punch and crack problems in three-dimensional elastostatics,” Proc. Roy. Soc.,A274, No. 1359, 507–528 (1963).

    Google Scholar 

  153. A. F. Ulitko, “The tension of an elastic space weakened by two round cracks lying in a single plane,” in: Stress Concentration [in Russian], Naukova Dumka, Kiev (1968), pp. 201–208.

    Google Scholar 

  154. W. S. Fu and L. M. Keer, “Complanar circular cracks under shear loading,” Int. J, Eng. Sci.,7, No. 4, 361–372 (1969).

    Google Scholar 

  155. V. V. Panasyuk, O. E. Andreikiv, and M. M. Stadnik, “Determining the boundary equilibrium of a brittle tody weakened by a system of cracks close tn plan view to round,” Dop. Akad. Nauk UrkRSR, Ser A., No. 6, 541–544 (1973).

    Google Scholar 

  156. L. R. Hall and A. S. Kobayashi, On the Correction of Stress Intensity Factors for Two Embedded Cracks, Boeing Structural Development Research Memorandum, No. 9, May, 1964.

  157. O. E. Andreikiv, “One spatial problem of the theory of cracks,” Dop. Akad. Nauk UkrRSR, Ser. A, No. 4, 313–316 (1969).

    Google Scholar 

  158. V. V. Panasyuk and A. E. Andreikiv, “One problem of limit equilibrium for an unlimited brittle body with a crack,” Prikl. Mekh.,6, No. 6, 25–29 (1970).

    Google Scholar 

  159. A. A. Kapshivyi and G. F. Maslyuk, “A solution of the first basic axially symmetric problem of thetheory of elasticity for a space with plane cracks by the method of p-analytical functions,” in: Computer and Applied Mathematics Interdepartmental Scientific Collection [in Russian], No. 8 (1969), pp. 65–79.

    Google Scholar 

  160. A. E. Andreikiv and V. V. Panasyuk, “The elastic equilibrium of an unlimited body weakened by a system of concentric cracks,” Prikl. Mekh.,6, No. 4, 124–128 (1970).

    Google Scholar 

  161. G. M. Valov, “The deformation of an elastic space having concentric circular slits,” in; Elasticity and Inelasticity [in Russian], No. 4, Mosk. Univ., Moscow (1975), pp. 36–49.

    Google Scholar 

  162. V. V. Panasyuk, O. E. Andreikiv, and M. M. Stadnik, “The failure of a brittle body weakened by a system of circular cracks,” Dop. Akad. Nauk UkrRSR, Ser. A, No. 9, 807–900 (1971).

    Google Scholar 

  163. A. E. Andreikiv, “Three-dimensional problems of the theory of cracks for quasibrittle bodies,” Fiz.-Khim. Mekh. Mater., No. 3, 54–60 (1976).

    Google Scholar 

  164. G. S. Kit, M. V. Khai, and I. P. Lauishnik, “The first basic problem of the theory of elasticity for a body with penny-shaped cracks,” Mat. Metody Fiz.-Mekh. Polya, No. 7, 26–32 (1978).

    Google Scholar 

  165. A. E. Andreikiv, “The elastic equilibrium of an unlimited body weakened by a system of arbitrarily oriented round cracks,” Fiz.-Khim. Mekh. Mater., No. 1, 76–78 (1979).

    Google Scholar 

  166. G. S. Kit, “A general method of solving spatial problems of thermal conductivity and thermal elasticity for a body with penny-shaped cracks,” Prikl. Mekh.,13, No. 12, 18–24 (1977).

    Google Scholar 

  167. Bernard Budiansky and Richard J. O'Connell, “Elastic moduli of a cracked solid,” Int. J. Solids Struct.,12, No. 2, 81–97 (1976).

    Google Scholar 

  168. Yu. N. Kuz'min, and Ya. S. Uflyand, “The axially symmetric problem of the theory of elasticity for a half-space weakened by a plane round slit,” Prikl. Mat. Mekh.,29, No. 6, 1132–1137 (1965).

    Google Scholar 

  169. Yu. N. Kuz'min, “The axially symmetric deformation of an elastic layer containing coaxial slits,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 6, 121–130 (1972).

    Google Scholar 

  170. K. N. Srivastava and Kripal Singh, “The effect of a penny-shaped crack on the distribution of stress in a semi-infinite solid,” Int. J. Eng. Sci.,7, No. 5, 469–490 (1969).

    Google Scholar 

  171. V. M. Aleksandrov, “The theory of equilibrium cracks in an elastic layer,” in: Stress Concentration [in Russian], No. 1, Naukova Dumka, Kiev (1965), pp. 39–45.

    Google Scholar 

  172. R. C. Shah and A. S. Kobayashi, “Stress intensity factors for an elliptical crack approaching the surface of a semi-infinite solid,” Int. J. Fract.,9, No. 2, 133–146 (1973).

    Google Scholar 

  173. A. Nisitani and Y. Murakami, “Stress intensity factors of an elliptical crack or a semi-elliptical crack subjected to tension,” Int. J. Fract.,10, No. 3, 353–368 (1974).

    Google Scholar 

  174. Ya. S. Uflyand, “Stress concentration in an elastic layer weakened by a round slit,” Nauch.-Tekh. Inform. Byull. Leningr. Politekh. Inst. Fiz.-Mat. Nauki, No. 8, 56–61 (1959).

    Google Scholar 

  175. M. Lowengrub, “Stress in the vicinity of a crack in a thick elastic plate,” Quart. Appl. Math.,19, No. 2, 119–126 (1961).

    Google Scholar 

  176. V. N. Aleksandrov and B. I. Smetanin, “An equilibrium crack in a thin layer,” Prikl. Mat. Mekh.,29, No. 4, 782–785 (1965).

    Google Scholar 

  177. N. V. Pal'tsun, “The critical stresses for a layer weakened by a flat round slit,” in: Materials of the Interuniversity Conference of Young Scientists and Mathematicians [in Russian], Khar'kov (1966), pp. 106–109.

  178. N. V. Pal'tsun, “The axially symmetric problem of the theory of elasticity for a layer weakened,by a flat round slit,” in: Some Questions of Applied Mathematics [in Russian], No. 3, Naukova Dumka, Kiev (1967), pp. 153–164.

    Google Scholar 

  179. B. I. Smetanin, “Some problems of slits in an elastic wedge and a layer,” Tnzh. Zh. Mekh. Tverd. Tela, No. 2, 115–122 (1968).

    Google Scholar 

  180. Y. M. Tsai, “Stress distribution crack shape and energy for a penny-shaped crack in a plate of finite thickness,” Eng. Fract. Mech.,4, No. 1, 155–169 (1972).

    Google Scholar 

  181. R. E. Kalaba and E. A. Zagustin, “Exact solution for the stress concentration in a slot,” Int. J. Eng. Sci.,10, No. 6, 491–502 (1972).

    Google Scholar 

  182. G. K. Dhawan, “The distribution of stress in the vicinity of an external crack in an infinite thick plate,” Acta Mech.,16, No. 3–4, 225–270 (1973).

    Google Scholar 

  183. I. M. Keer, “A class of non-symmetrical punch and crack problems,” Quart. J. Mech. Appl. Math.,17, No. 4, 423–436 (1964).

    Google Scholar 

  184. G. K. Dhawan, “Asymmetric distribution of stress in a thick plate containing a penny-shaped crack,” Indian J. Pure Appl. Math.,3, No. 5, 729–734 (1972).

    Google Scholar 

  185. O. P. Piddubnyak, “The torsion of an elastic sphere weakened by a round slot,” Visn. L'vivs'k. Univ., Ser. Mekh.-Mat., No. 9, 69–74 (1974).

    Google Scholar 

  186. A. S. Kobayashi, M. Ziv, and L. R. Hall, “The approximate stress intensity factor for an embedded elliptical crack near two parallel free surfaces,” Int. J. Fract. Mech.,1, No. 2, 81–95 (1965).

    Google Scholar 

  187. V. S. Gubenko, “The problem of a round punch coupled with a half-space and of a layer weakened by a circular slit,” Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, Mekh. Mashinostr., No. 5, 151–153 (1961).

    Google Scholar 

  188. Takashi Koizumi, Toshkazu Shibuya, Tchiro Nakahara, and Shuno Tanaka, “A crack problem in a slab with an annular crack subjected to pressure,” Bull. JSME,20, No. 139, 17–23 (1977).

    Google Scholar 

  189. M. Kumar and A. Atsumi, “A pressurized annular crack in a transversely Isotropic slab,” Acta Mech.,26, No. 1–4, 321–330 (1977).

    Google Scholar 

  190. V. S. Nikitin and G. S. Shapiro, “Local axially symmetric compression of an elastic layer weakened by a ring or circular slits,” Prikl. Mat. Mekh.,38, No. 1, 139–144 (1974).

    Google Scholar 

  191. N. V. Pal'tsun, “The stresses in an elastic layer weakened by two round slits,” Prikl. Mekh.,3, No. 2, 62–70 (1967).

    Google Scholar 

  192. N. V. Pal'tsun, “The critical stresses for a layer with two cracks,” in: Republic Interdepartment Scientific and Technical Collection [in Russian], No. 7 (1968), pp. 72–78.

    Google Scholar 

  193. A. E. Andreiklv, “The limit equilibrium state of a layer weakened by a system of parallel external cracks which are round in plan view,” Fiz.-Khim. Mekh. Mater.,12, No. 5, 65–70 (1976).

    Google Scholar 

  194. K. N. Srivastava and J. P. Dwivedi, “The effect of a penny-shaped crack on the distribution of stress in an elastic sphere,” Int. J. Eng. Sci.,9, No. 4, 399–420 (1971).

    Google Scholar 

  195. Masanori Abe and Akira Atumi, “The distribution of elastic stresses in a composite sphere containing a penny-shaped crack,” Nihon Kikai Gakkai Rombunsyu, Trans. Jpn. Soc. Mech. Eng.,41, No. 352, 3399–3409 (1975).

    Google Scholar 

  196. F. W. Smith, A. F. Emery, and A. S. Kobayashi, “Stress intensity factors for semicircular cracks,” Trans. ASME,E34, No. 4, 953–959 (1967).

    Google Scholar 

  197. G. P. Cherepanov, “The brittle strength of vessels under pressure,” Zh. Prikl. Mekh. Tekh. Fiz., No. 6, 90–101 (1969).

    Google Scholar 

  198. J. S. Raju and J. C. Newman, “Improved stress-intensity factors of semi-elliptical surface cracks in finite-thickness plates,” in: Trans. 4th Int. Conf. Struct. Mech in Reactor Technol., San Francisco, Calif., 1977, Vol. 6, G 5.8/1-G 5.8/14, Amsterdam et al., (1977).

    Google Scholar 

  199. Satya N. Atluri and K. Kathiresan, “Stress analysis of typical flaws in aerospace structural components using 3-D hybrid displacement finite element method, “ in: AIAA/ASME 19th Struct. Dyn. and Mater. Conf., Bethesda, Md., 1978, New York (1978), pp. 340–350.

  200. W. S. Blackburn and T. K. Hellen, “Finite element stress intensity evaluations in two and three dimensions,” in: Fract. Mech. Eng. Pract. Pap.Annu. Conf., Stress Anal. Group, Inst. Phys., Sheffield, 1976, London (1977), pp. 97–112.

  201. R. P. Hartranft and G. C. Sih, “An alternating method applied to edge and surface crack problems,” in: Mech. Fracture, Vol. 1, Leyden (1973), pp. 179–238.

    Google Scholar 

  202. Hiroshi Miyamoto, “Application of the finite element method to failure mechanics, Part I,” Sosei To Kako, J. Jpn. Soc. Technol. Plast.,14, No. 153, 847–854 (1973).

    Google Scholar 

  203. J. R. Rice and N. Levy, The Part-Through Surface Crack in an Elastic Plate, ASME Paper N APM-20 (1971).

  204. R. C. Shah and A. S. Kobayashi, “An elliptical crack in a finite-thickness plate subjected to tensile and bending loading,” Trans. ASME,J96, No. 1, 47–54 (1974).

    Google Scholar 

  205. F. W. Smith and D. R. Sorensen, “The semi-elliptical surface crack. A solution by the alternating method,” Int. J. Fract.,12, No. 1, 47–57 (1976).

    Google Scholar 

  206. G. G. Chell, “The stress intensity factors for part through thickness embedded and surface flaws subjected to a stress gradient,” Eng. Fract. Mech.,8, No. 2, 331–340 (1976).

    Google Scholar 

  207. A. S. Kobayashi, “Crack opening displacement in a surface flawed plate subjected to tension or plate bending,” in: Proc. 2nd Int. Conf. Mech. Behav. Mater., Boston, Mass., 1976, S. 1 (1977), pp. 1073–1077.

  208. T. G. Gray, “Convenient closed form stress intensity factors for common crack configurations,” Int. J. Fract.,13, No. 1, 65–75 (1977).

    Google Scholar 

  209. A. S. Kobayashi, N. Polvanich, A. F. Emery, and W. J. Lowe, “Inner and outer cracks in internally pressurized cylinders,” Trans. ASME,J99, No. 1, 83–89 (1977).

    Google Scholar 

  210. Asao Nishimura, Shigeru Aoki, and Masaru Sokata, “The stress intensity factor for a semielliptical crack in a cylinder under the action of internal pressure,” Nihon Nikai Gakkai Rombunsyu, Trans. Jpn. Soc. Mech. Eng.,43, No. 363, 3192–3199 (1977).

    Google Scholar 

  211. W. T. Fujimoto, “Determination of crack growth and fracture toughness parameters for surface flaws emanating from fastener holes,” Proc. AIAA/ASME/SAE 17th Struct., Struct. Dyn., and Mater. Conf., King of Prussia, Pa., 1976, S. 1, pp. 522–531.

  212. T. E. Kullgren, F. W. Smith, and G. P. Ganong, “Quarter elliptical cracks emanating from holes in plates,” Trans. ASME, J. Eng. Mater. Technol.,100, No. 2, 144–149 (1978).

    Google Scholar 

  213. R. P. Srivastav and P. Narain, “Stress distribution due to a pressurized exterior crack in an infinite Isotropie medium with a coaxial cylinder cavity,” Int. J. Eng. Sci.,4, No. 6, 689–697 (1966).

    Google Scholar 

  214. R. P. Srivastav and D. Lee, “Axisymmetric external crack problems for media with cylindrical cavities,” Int. J. Eng. Sci.,10, No. 3, 217–232 (1972).

    Google Scholar 

  215. L. M. Keer, V. K. Luk, and J. M. Freedman, “A circumferential edge crack in a cylindrical cavity,” Trans. ASME,E44, No. 2, 250–254 (1977).

    Google Scholar 

  216. R. J. Hartranft and G. C. Sih, “An approximate three-dimensional theory of plates with application to crack problems,” Int. J. Eng. Sci.,8, No. 8, 711–729 (1970).

    Google Scholar 

  217. G. C. Sih and R. J. Hartranft, “Variation of strain energy release rate with plate thickness,” Int. J. Fract. Mech.,9, No. 1, 75–82 (1973).

    Google Scholar 

  218. M. Shmuely and Z. S. Alterman, “A three-dimensional numerical analysis of stress distribution in the vicinity of a crack tip,” Isr. J. Technol.,9, No. 5, 523–530 (1971).

    Google Scholar 

  219. E. S. Folias, “On the three-dimensional theory of cracked plates,” Trans. ASME,E42, No. 3, 663–674 (1975).

    Google Scholar 

  220. Yoichi Sumi and Yoshiyuki Yamamoto, “Three-dimensional analysis of the stress intensity factors in problems of a through crack,” Nihon Kakai Gakkai Rombunsyu. Trans. Jpn. Soc. Mech, Eng.,44, No. 378, 413–418 (1978).

    Google Scholar 

  221. D. Ayers, “A numerical procedure for calculating stress and deformation near a slit in a three-dimensional elastic-plastic solid,” Eng. Fract. Mech.,2, 87–106 (1970).

    Google Scholar 

  222. P. P. Voroshko, “Determining the three-dimensional stressed state of a rectangular beam with a center through crack,” Probl. Prochn., No. 4, 9–14 (1979).

    Google Scholar 

  223. J. P. Benthem, “The state of stress at the vertex of a quarter infinite crack in a half-space,” Int. J. Solids Struct.,13, No. 5, 479–492 (1977).

    Google Scholar 

  224. M. K. Kassir and G. C. Sih, “Application of Papkovich-Neuber potentials to a crack problem,” Int. J. Solids Struct.,9, No. 5, 643–654 (1973).

    Google Scholar 

  225. R. J. Hartranft and G. C. Sih, “Three-dimensional growth characteristics of a plane crack subjected to concentrated forces,” Trans. ASME,E41, No. 3, 808–809 (1974).

    Google Scholar 

  226. D. O. Harris, “Slicing procedure for approximate three-dimensional Green's functions for cracks in plates of finite thickness,” Int. J. Fract.,9, No. 1, 21–32 (1973).

    Google Scholar 

  227. H. Neiber, Stress Concentration [in Russian], Obed. Gos. Izd., Moscow (1947).

    Google Scholar 

  228. B. M. Wundt, A Unified Interpretation of Room Temperature Strength of Notch Specimens as Influenced by Size, ASME Paper, N59 (1959), Met-9.

  229. G. R. Irwin, “Fracture mechanics,” in: Structural Mechanics, Proc. 1st Symposium of Naval Structure Mechanics (1960), pp. 557–591.

  230. H. F. Bueckner, Discussion of Reference 4, Fracture Toughness Testing and Its Applications, ASTM Special Technical Publication N 381, Philadelphia, Pa. (1965), pp. 82–83.

  231. D. P. Clausing, “Stress and strain distribution in a tension specimen with a circumferential notch,” J. Mater.,4, No. 3, 566–582 (1969).

    Google Scholar 

  232. A. A. Wells, “Crack opening displacements from elastic-plastic analysis of externally notched tension bars,” Eng. Fract. Mech.,1, No. 3, 399–410 (1969).

    Google Scholar 

  233. S. Ya. Yarema, “Stress intensity factors for cylindrical samples with an external crack of variable depth,” Fiz. Khim. Mekh. Mater., No. 1, 87–89 (1970).

    Google Scholar 

  234. A. E. Andreikiv, V. V. Panasyuk, and I. N. Pan'ko, “The theory of limit equilibrium of cylindrical samples with external circular cracks,” Fiz.-Khim. Mekh. Mater., No. 3, 29–39 (1974).

    Google Scholar 

  235. A. Kobayasi and W. Moss, “Coefficients of the increase in stress intensity in tension of a plate with a surface defect and of a round rod with a circular notch,” in: New Methods of Rating the Resistance of Materials to Brittle Failure [Russian translation], Mir, Moscow (1972), pp. 127–145.

    Google Scholar 

  236. D. O. Harris, “Stress intensity factors for hollow circumferentially notched round bars,” Trans. ASME,D89, No. 1, 49–54 (1967).

    Google Scholar 

  237. D. J. Hayes and J. G. Williams, “A practical method for determining the Dugdale model solution for cracked bodies of arbitrary shape,” Int. J. Fract. Mech.,8, No. 3, 239–256 (1972).

    Google Scholar 

  238. L. M. Keer, J. M. Freedman, and H. A. Watts, “An infinite tensile cylinder with a circumferential edge crack,” Lett. Appl. Eng. Sci.,5, No. 2, 129–139 (1977).

    Google Scholar 

  239. Y. Muzakami and H. Nishitani, “The stress intensity factor in tension of a round rod with a circular crack,” Nihon Kikkai Gakkai Rombunsyu, Trans. Jpn., Soc. Mech. Eng.,41, No. 342, 360–367 (1975).

    Google Scholar 

  240. I. D. Lubahn, “Experimental determination of the energy release rate for notch bending and notch tension,” Proc. ASTM,59, 885–913 (1959).

    Google Scholar 

  241. V. V. Panasyuk, A. E. Andreikiv, and S. E. Kovchik, “Experimental determination of the fracture toughness of structural materials,” Fiz.-Khim. Mekh. Mater., No. 2, 10–17 (1976).

    Google Scholar 

  242. J. N. Sneddon and R. J. Tait, “The effect of a penny-shaped crack on the distribution of stress in a long circular cylinder,” Int. J. Eng. Sci.,1, 391–409 (1963).

    Google Scholar 

  243. W. D. Collins, “Some axially symmetric stress distributions in elastic solids containing penny-shaped cracks,” Proc. Edinburgh Math. Soc.,13, No. 1, 69–78 (1962).

    Google Scholar 

  244. I. N. Pan'ko, “The question of the limit equilibrium state of a quasibrittle cylinder with an internal round crack,” in: Materials of the Seventh Conference of Young Scientists of the Physicomechanical Institute of the Academy of Scientists of the Ukrainian SSR. Section on the Physicochemical Mechanics of Materials (L'vov, 1975) [in Russian], Dep. in the All-Union Institute for Scientific and Technical Information No. 1138–76 (1976), pp. 140–142.

  245. G. C. Sih, “On the crack-tip stress intensity factors for cylindrical bars under torsion,” J. Aerospace Sci.,29, No. 10, 1265–1266 (1962).

    Google Scholar 

  246. G. C. Sih, “Strength of stress singularities at crack tips for flexural and torsional problems,” Trans. ASME,E30, No. 30, 419–425 (1963).

    Google Scholar 

  247. N. B. Romalis, “Failure in torsion of a round bar with a crack on the arc of the circumference,” Zh. Prikl. Mekh. Tekh. Fiz., No. 5, 121–125 (1970).

    Google Scholar 

  248. M. K. Kassir, “A note on the twisting deformation of a nonhomogeneous shaft containing a circular crack,” Int. J. Fract. Mech.,8, No. 3, 325–334 (1972).

    Google Scholar 

  249. B. I. Kudryavtsev and V. Z. Parton, “The torsion and tension of a cylinder with an external circular notch,” Prikl. Mat. Mekh.,37, No. 2, 316–325 (1973).

    Google Scholar 

  250. G. B. Kuzina and N. B. Romalis, “The distribution of radial cracks in a round bar in torsion,” Zh. Prikl. Mekh. Tekh. Fiz., No. 1, 169–171 (1974).

    Google Scholar 

  251. J. Tweed and G. Longmuir, “The torsion problem for a circular cylinder with a radial edge crack,” J. Eng. Math.,9, No. 2, 117–125 (1975).

    Google Scholar 

  252. Paul J. Blatz, “Finite elastic deformation of a plane strain wedge-shaped radial crack in a compressible cylinder,” in: Intern. Sympos. Nonlinear Differential Equations and Nonlinear Mech., Colorado Springs, 1961, Academic Press, New York-London (1963), pp. 193–210.

    Google Scholar 

  253. A. F. Emery and C. M. Segedin, “The evaluation of the stress intensity factors for cracks subjected to tension, torsion, and flexure by an efficient numerical technique,” Trans. ASME,D94, No. 2, 387–393 (1972).

    Google Scholar 

  254. G. P. Nikishkov and E. M. Morozov, “The stress intensity factors for circular cracks in heavy walled tabes intension,” Probl. Prochn., No. 6, 44–48 (1976).

    Google Scholar 

  255. R. Erdol and F. A. Erdogan, “A thick-walled cylinder with an axisymmetric internal or edge crack,” Trans. ASME, J. Appl. Mech.,45, No. 2, 281–286 (1978).

    Google Scholar 

  256. Kazuyoshi Suzuki, Toshikari Shibuya, and Takashi Kiozumi, “The torsion of an infinite hollow cylinder with an external crack,” Int. J. Eng. Sci.,16, No. 10, 707–715 (1978).

    Google Scholar 

  257. J. P. Benthem and W. T. Koiter, “Asymptotic approximations to crack problems,” in: Mechanics of Fracture, Vol. 1, Leyden (1973), pp. 131–178.

    Google Scholar 

  258. V. V. Panasyuk, A. E. Andreikiv, S. E. Kovchik, et al., “Determining the characteristics of KIc by bending of a cylindrical sample with a circular crack,” Fiz.-Khim. Mekh. Mater., No. 2, 3–9 (1976).

    Google Scholar 

  259. V. V. Panasyuk, A. E. Andreikiv, and S. E. Kovchik, Methods of Rating the Crack Resistance of Structural Materials [in Russian], Naukova Dumka, Kiev (1977).

    Google Scholar 

  260. A. E. Andreikiv, The Failure of Quasibrittle Bodies with Cracks in the Complex Stressed State [in Russian], Naukova Dumka, Kiev (1979).

    Google Scholar 

  261. A. N. Zlatin, “The tension of a cylinder containing periodically distributed penny-shaped cracks,” Dokl. Akad. Nauk SSSR,241, No. 6, 1300–1302 (1978).

    Google Scholar 

  262. G. P. Cherepanov, The Mechanics of Brittle Failure [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  263. D. D. Ivlev, “A theory of quasibrittle failure cracks,” Zh. Prikl. Mekh. Tekh. Fiz., No. 6, 88–128 (1967).

    Google Scholar 

  264. V. Z. Parton and E. M. Morozov, The Mechanics of Elastoplastic Failure [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  265. G. I. Barenblatt, “A mathematical theory of equilibrium cracks formed in brittle failure,” Zh. Prikl. Mekh. Tekh. Fiz., No. 4, 3–56 (1961).

    Google Scholar 

  266. H. Libowitz, J. Eftis, and D. L. Jones, “Some recent theoretical and experimental developments infracture mechanics,” in: Advances in Research on the Strength and Fracture of Materials, 4th Int. Conf. Fract., Waterloo, 1977, Vol. 1, New York et al. (1978), pp. 695–723.

    Google Scholar 

  267. G. C. Sih, Handbook of Stress Intensity Factors, Vol. 1, Lehigh Univ. Press, Bethelehem (1973).

    Google Scholar 

  268. I. N. Sneddon and M. Lowengrub, Crack Problems in the Classical Theory of Elasticity, John Wiley and Sons, New York (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Fiziko-Khimicheskaya Mekhanika Materialov, Vol. 15, No. 5, pp. 45–65, September–October, 1979.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panasyuk, V.V., Andreikiv, A.E. & Stadnik, M.M. Spatial problems of the theory of cracks (a review). Mater Sci 15, 467–484 (1980). https://doi.org/10.1007/BF00729239

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00729239

Keywords

Navigation