Skip to main content
Log in

Aggregation ofNaja nigricollis cardiotoxin: Characterization and quantitative estimate by time-resolved polarized fluorescence

  • Regular Articles
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

After purification to homogeneity by Bio-Rex 70 ion exchange chromatography, micromolar solutions ofNaja nigricollis cardiotoxin were found to contain significant amounts of aggregates, as detected by time-resolved polarized fluorescence of its single tryptophan residue. The level of cardiotoxin aggregation depends strongly and reversibly on the protein concentration and pH. However, supplementary reverse-phase HPLC completely suppresses this aggregation, resulting in all cases in fluorescence anisotropy decays characteristic of the pure cardiotoxin monomer. The self-association properties of cardiotoxin, in the presence of a possible cofactor eliminated by the HPLC step, may be functionally relevant, and would deserve further investigation. The physical heterogeneity of the cardiotoxin samples required an appropriate model for the analysis of fluorescence depolarization, which was iteratively improved by comparison with experimental results. In this way, an approximate molar fraction of 10–15% aggregated cardiotoxin at a 90ΜM total protein concentration, pH 7, was determined. The fluorescence of the partly aggregated samples is significantly perturbed as compared to the HPLC-treated monomer, indicating that the cardiotoxin aggregate must have an increased average fluorescence lifetime and a strongly decreased initial anisotropy. The decrease in initial anisotropy suggests either an increased mobility of the tryptophan residue upon aggregation or fast energy transfers between residues of different cardiotoxin molecules brought within a short distance in the aggregate. This study illustrates the high sensitivity of the time-resolved fluorescence technique, through both total fluorescence and anisotropy parameters, to low levels of physical or chemical heterogeneity in a protein sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Dufton and R. C. Hider (1988)Pharmacol Ther. 36, 1–40.

    Google Scholar 

  2. B. Rees, J.-P. Samama, J.-C. Thierry, M. Gilibert, J. Fischer, H. Schweitz, M. Lazdunski, and D. Moras (1987)Proc. Natl. Acad. Sci. 84, 3132–3136.

    Google Scholar 

  3. A. L. Harvey (1985)J. Toxicol. Toxin. Rev. 4, 41–69.

    Google Scholar 

  4. A. Ménez, E. Gatineau, C. Roumestand, A. L. Harvey, L. Mouawad, B. Gilquin, and F. Toma (1990)Biochimie 72, 575–588.

    Google Scholar 

  5. P. Blandin, F. Mérola, J.-C. Brochon, O. Trémeau, and A. Ménez (1994)Biochemistry 33, 2610–2619.

    Google Scholar 

  6. J. Lee, Y. Wang, and B. G. Gibson (1991)J. Fluoresc. 1, 23–29.

    Google Scholar 

  7. M. Vincent, I. M. Li de la Sierra, M. N. Berberan-Santos, A. Diaz, M. Diaz, G. Padron, and J. Gallay (1992)Eur. J. Biochem. 210, 953–961.

    Google Scholar 

  8. J.-C. Brochon, P. Tauc, F. Mérola, and B. M. Schoot (1993)Anal. Chem. 65, 1028–1034.

    Google Scholar 

  9. T. Fernando and C. Royer (1992)Biochemistry 31, 3429–3441.

    Google Scholar 

  10. J. L. Silva, C. F. Silveira, A. Correia Jr., and L. Pontes (1992)J. Mol. Biol. 223, 545–555.

    Google Scholar 

  11. J. Gallay, M. Vincent, I. M. Li de la Sierra, J. Alvarez, R. Ubieta, and J. Madrazo (1993)Eur. J. Biochem. 211, 213–219.

    Google Scholar 

  12. M. Jullien (1989)FEBS Lett. 253, 38–42.

    Google Scholar 

  13. S. R. Anderson (1991)J. Biol. Chem. 266, 11405–11408.

    Google Scholar 

  14. R. Liao, C. K. Wang, and H. C. Cheung (1992)Biophys. J. 63, 986–995.

    Google Scholar 

  15. R. Rigler and M. Ehrenberg (1973)Q. Rev. Biophys. 6, 139–199.

    Google Scholar 

  16. R. D. Ludescher, L. Peting, S. Hudson, and B. Hudson (1987)Biophys. Chem. 28, 59–75.

    Google Scholar 

  17. J.-C. Brochon and A. Livesey (1988) in R. H. Douglas, J. Moan, and F. Dall'Acqua (Eds.),Light in Biology and Medicine, Vol. 1, pp. 21–29.

  18. J.-C. Brochon, F. Mérola, and A. K. Livesey (1992) in American Institute of Physics (Ed.),Synchrotron Radiation and Dynamic Phenomena, New York, pp. 435–450.

  19. L. Fryklund and D. Eacker (1975)Biochemistry 14, 2865–2871.

    Google Scholar 

  20. J. M. Grognet (1988) Thèse de 3ème Cycle, Paris V.

  21. E. Gatineau, M. Takechi, F. Bouet, P. Mansuelle, H. Rochat, A. L. Harvey, T. Montenay-Garestier, and A. Ménez (1990)Biochemistry 29, 6480–6489.

    Google Scholar 

  22. S. J. Hodges, A. S. Agbaji, A. L. Harvey, and R. C. Hider (1987)Eur. J. Biochem. 165, 373–383.

    Google Scholar 

  23. A. K. Livesey and J.-C. Brochon (1987)Biophys. J. 52, 693–706.

    Google Scholar 

  24. F. Mérola, R. Rigler, A. Holmgren, and J.-C. Brochon (1989)Biochemistry 28, 3383–3398.

    Google Scholar 

  25. B. Valeur and G. Weber (1977)Photochem. Photobiol. 25, 441–444.

    Google Scholar 

  26. P. Wahl (1979)Biophys. Chem. 10, 91–104.

    Google Scholar 

  27. P. Blandin (1990) Rapport de stage de DEA, Paris XI.

  28. M. R. Eftink, I. Gryczynski, W. Wiczk, G. Laczko, and J. R. Lakowicz (1991)Biochemistry 30, 8945–8953.

    Google Scholar 

  29. J. B. A. Ross, K. W. Rousslang, and L. Brand (1981)Biochemistry 20, 4361–4369.

    Google Scholar 

  30. F. Claesens and R. Rigler (1986)Eur. Biophys. J. 13, 331–342.

    Google Scholar 

  31. M. Chabbert, W. Hillen, D. Hansen, M. Takahashi, and J. A. Bousquet (1992)Biochemistry 31, 1951–1960.

    Google Scholar 

  32. T. C. Werner and L. S. Forster (1979)Photochem. Photobiol. 29, 905–914.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mérola, F., Blandin, P., Brochon, J.C. et al. Aggregation ofNaja nigricollis cardiotoxin: Characterization and quantitative estimate by time-resolved polarized fluorescence. J Fluoresc 5, 205–215 (1995). https://doi.org/10.1007/BF00727541

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00727541

Key words

Navigation