Skip to main content
Log in

Human acetylcholinesterase and butyrylcholinesterase are encoded by two distinct genes

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    Various hybridization approaches were employed to investigate structural and chromosomal interrelationships between the human cholinesterase genes CHE and ACHE encoding the polymorphic, closely related, and coordinately regulated enzymes having butyrylcholinesterase (BuChE) and acetylcholinesterase (AChE) activities.

  2. 2.

    Homologous cosmid recombination with a 190-base pair 5′ fragment from BuChEcDNA resulted in the isolation of four overlapping cosmid clones, apparently derived from a single gene with several introns. The Cosmid CHEDNA included a 700-base pair fragment known to be expressed at the 3′ end of BuChEcDNA from nervous system tumors and which has been mapped byin situ hybridization to the unique 3q26-ter position. In contrast, cosmid CHEDNA did not hybridize with full-length AChEcDNA, proving that the complete CHE gene does not include AChE-encoding sequences either in exons or in its introns.

  3. 3.

    The chromosomal origin of BuChE-coding sequences was further examined by two unrelated gene mapping approaches. Filter hybridization with DNA from human/hamster hybrid cell lines revealed BuChEcDNA-hybridizing sequences only in cell lines including human chromosome 3. However, three BuChEcDNA-homologous sequences were observed at chromosomal positions 3q21, 3q26-ter, and 16q21 by a highly stringentin situ hybridization protocol, including washes at high temperature and low salt.

  4. 4.

    These findings stress the selectivity of cosmid recombination and chromosome blots, raise the possibility of individual differences in BuChEcDNA-hybridizing sequences, and present an example for a family of highly similar proteins encoded by distinct, nonhomologous genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arias, S., Rolo, M., and Gonzalez, N. (1985). Gene dosage effect present in trisomy 3q25.2-ter for serum cholinesterase (CHE1) and absent for transferrin (TF) and Ceruloplasmin (CP).Cytogenet Cell Genet. 40571.

    Google Scholar 

  • Baker, R. T., and Board, P. G. (1989). Unequal crossover generates variation in ubiquitin coding unit number at the human Ubc polyubiquitin locus.Am. J. Hum. Genet. 44534–542.

    Google Scholar 

  • Chatonnet, A., and Lockridge, O. (1989). Comparison of butyrylcholinesterase and acetylcholinesterase.Biochem. J. 260625–634.

    Google Scholar 

  • D'Eustachio, P., and Ruddle, F. (1983). Somatic cell genetics and gene families.Science 220919–924.

    Google Scholar 

  • Feinberg, A., and Vogelstein, B. (1983). A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity.Anal. Biochem. 1326–13.

    Google Scholar 

  • Gnatt, A., and Soreq, H. (1987). Molecular cloning of human cholinesterase genes: Potential applications in neurotoxicology. InModel Systems in Neurotoxicology: Alternative Approaches to Animal Testing (A. Shahar, and A. M. Goldbberg, Eds.). Alan R. Liss, New York, pp. 111–119.

    Google Scholar 

  • Gnatt, A., Prody, C. A., Zamir, R., Lieman-Hurvitz, J., Zakut, H., and Soreq, H. (1990). Expression of alternatively terminated unusual CHEmRNA transcripts, mapping to chromosome 3q26-ter, in nervous system tumors.Cancer Res. 501983–1987.

    Google Scholar 

  • Hada, T., Yamawaki, M., Morwaki, Y., Tamura, S., Yamamoto, T., Amuro, Y., Nabeshima, K., and Higashino, K. (1985). Hypercholinesterasemia with isoenzymic alteration in a family.Clin. Chem. 311997–2000.

    Google Scholar 

  • Holmquist, G. P. (1987). Role of replication time in the control of tissue specific gene expression.Am. J. Hum. Genet. 40151–157.

    Google Scholar 

  • Lapidot-Lifson, Y., Prody C. A., Ginzberg, D., Meytes, D., Zakut, H., and Soreq, H. (1989). Co-amplification of human ecetylcholinesterase and butyrylcholinesterase genes in blood cells: Correlation with various leukemias and abnormal megakaryocytopoiesis.Proc. Natl. Acad. Sci. USA 864715–4719.

    Google Scholar 

  • Lawrence, J. B., Villnave, C. A., and Singer, R. H. (1988). Sensitive, high resolution chromatin and chromosome mappingin situ: Presence and orientation of two closely integrated copies of EBV in a lymphoma cell line.Cell 5251–61.

    Google Scholar 

  • Lovrien, E. W., Magenis, R. E., Rivas, M. L., Lamvik, N., Rowe, S., Wood, J., and Hemmerling, J. (1978). Serum cholinesterase E2 linkage analysis: Possible evidence for localization to chromosome 16.Cytogenet. Cell Genet. 22324–326.

    Google Scholar 

  • Maniatis, T., Fritsch, E. F., and Sambrook, J. (1982).Molecular Cloning, a Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • McGuire, M. C., Nogueira, C. P., Bartels, C. F., Lightstone, H., Hajra, A., Van der Spek, A. S. L., Lockridge, O., and La Du, B. N. (1989). Identification of the structural mutation responsible for the dibucaine resistant (atypical) variant form of human serum cholinesterases.Proc. Natl. Acad. Sci. USA 86953–957.

    Google Scholar 

  • McTiernan, C., Adkins, S., Cantonnet, A., Vaughan, T. A., Bartels, C. F., Kott, M., Rosenberry, T. L., Lockridge, O., and LaDu, B. N. (1987). Brain cDNA clone for human cholinesterase.Proc. Natl. Acad. Sci. USA 846682–6686.

    Google Scholar 

  • Poustka, A., Rackwitz, H. R., Frischauf, A.-M., Hohn, B., and Lehrach, H. (1984). Selective isolation of cosmid clones by homologous recombination in Escherichia coli.Proc. Natl. Acad. Sci. USA 814129–4133.

    Google Scholar 

  • Prody, C., Zevin-Sonkin, D., Gnatt, A., Koch, R., Zisling, R., Goldberg, O., and Soreq, H. (1986). Use of synthetic oligodeoxynucleotide probes for the isolation of a human cholinesterase cDNA clone.J. Neurosci. Res. 1625–35.

    Google Scholar 

  • Prody, C., Gnatt, A., Zevin-Sonkin, D., Goldberg, O., and Soreq, H. (1987). Isolation and characterization of full length cDNA clones for cholinesterase from fetal human tissues.Proc. Natl. Acad. Sci. USA 863555–3559.

    Google Scholar 

  • Prody, D. A., Dreyfus, P., Zamir, R., Zakut, H., and Soreq, H. (1989).De novo amplification within a “silent” human cholinesterase gene in a family subjected to prolonged exposure to organophosphorous insecticides.Proc. Natl. Acad. Sci. USA 86690–694.

    Google Scholar 

  • Rabin, M., Fries, R., Singer, D., and Ruddle, F. H. (1985). NARS transforming gene maps to region p11-p13 on chromosome No. 1 by hybridization.Cytogenet. Cell Genet. 39206–209.

    Google Scholar 

  • Rackonczay, Z., and Brimijoin, S. (1988). Biochemistry and pathophysiology of the molecular forms of cholinesterases. InSubcellular Biochemistry 12 (J. R. Harris, Ed.), Plenum Press, New York, pp. 335–378.

    Google Scholar 

  • Rozen, R., Barton, D., Du, J., Hum, D. W., MacKenzie, R. E., and Francke, U. (1989). Chromosomal localization of the gene for the human Trifunctional enzyme, methylenetetrahydrofolate dehydrogenase—methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase.Am. J. Hum. Genet. 44781–786.

    Google Scholar 

  • Seed, B. (1983). Purification of genomic sequences from bacteriophage libraries by recombination and selectionin vivo.Nucleic Acid Res. 112427–2444.

    Google Scholar 

  • Soreq, H., and Prody, C. A. (1989). Sequence similarities between human acetylcholinesterase and related proteins: Putative implications for therapy of anticholinesterase intoxication, InComputer Assisted Modeling of Receptor-Ligand interactions, Theoretic Aspects and Application to Drug Design (A. Golombek, and R. Rein, Eds.). Alan R. Liss, New York, pp. 347–359.

    Google Scholar 

  • Soreq, H., and Zakut, H. (1990).Cholinesterase Genes: Multileveled Regulation, Monographs in Human Genetics, Vol. 13. (R. S. Sparkes, Ed.), Karger, Bazel (in press).

    Google Scholar 

  • Soreq, H., Zamir, R., Zevin-Sonkin, D., and Zakut, H. (1987). Human cholinesterase genes localized by hybridization to chromosomes 3 and 16.Hum. Genet. 77325–328.

    Google Scholar 

  • Soreq, H., Ben-Aziz, R., Prody, C. A., Gnatt, A., Neville, L., Lieman-Hurwitz, J., Lev-Lehman, E., Ginzberg, D., Seidman, S., Lapidot-Lifson, Y., Ayalon, A., and Zakut, H. (1990). Molecular cloning and construction of human acetylcholinesterase coding sequence reveals a G, C-rich attenuating domain.Proc. Natl. Acad. Sci. USA (in press).

  • Sparkes, R. S., Field, L. L., Sparkes, M. C., Crist, M., Spence, M. A., Janes, K., and Garry, P. J. (1984). Genetic linkage studies of transferrin, pseudocholinesterase and chromosome 1 loci.Hum. Hered. 3496–100.

    Google Scholar 

  • Taylor, P., Schumacher, M., McPhee-Quigley, K., Friedmann, T., and Taylor, S. (1987). The structure of acetylcholinesterase: Relationship to its function and cellular disposition.Trends Neurosci. 1093–95.

    Google Scholar 

  • Toutant, J. P., and Massoulie, J. (1987). Polymorphism of pseudocholinesterase inTorpedo marorata tissues: Comparative study of the catalytic and molecular properties of this enzyme with acetylcholinesterase.J. Neurochem. 44580–592.

    Google Scholar 

  • Zakut, H., Zamir, R., Sindell, L., and Soreq, H. (1989). Gene mapping on chorionic villi chromosomes by hybridizationin situ: Refinement of cholinesterase cDNA binding sites to chromosome 3q21, 3q26 and 16q21.Hum. Reprod. 4941–946.

    Google Scholar 

  • Zakut, H., Ehrlich, G., Ayalon, A., Prody, C. A., Malinger, G., Seidman, S., Kehlenbach, R., and Soreq, H. (1990b). Acetylcholinesterase and butyrylcholinesterase genes co-amplify in primary ovarian carinomas.J. Clin. Invest. 86.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gnatt, A., Ginzberg, D., Lieman-Hurwitz, J. et al. Human acetylcholinesterase and butyrylcholinesterase are encoded by two distinct genes. Cell Mol Neurobiol 11, 91–104 (1991). https://doi.org/10.1007/BF00712802

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00712802

Key words

Navigation