Skip to main content
Log in

Alkali-metal clusters as prototypes for electron solvation in zeolites

  • Published:
Journal of inclusion phenomena and molecular recognition in chemistry Aims and scope Submit manuscript

Abstract

Zeolites are unique in that they can play host to a large number of alkali-metal clusters of the type Mn +p hitherto unseen in any other system. When isolated, these clusters behave as color centers. The alkali ions reside in ionic sites within the cavities and so the nature of the cluster is very much a function of the zeolite host, the Si:Al ratio, and the method chosen to prepare the cluster. Since these centers are created within zeolite cages rather than as structural defects (as is the case with the alkali halides) high cluster concentrations can be achieved at which point the optical and magnetic properties of the zeolite change profoundly. We review experimental work in this area, as well as our own attempts to understand both the electronic and optical properties of these systems in terms of an electron solvation model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. T. Bolwijn, D. J. Schipper, and C. Z. van Doorn,J. appl. Phys.,43, 132 (1972).

    Google Scholar 

  2. P. H. Kasai,J. Chem. Phys.,43, 3322 (1965).

    Google Scholar 

  3. K. K. Iu, X. Liu and J. K. Thomas,J. Phys. Chem.,97, 8165 (1993).

    Google Scholar 

  4. P. A. Anderson, D. Barr, and P. P. Edwards,Angew. Chem. Int. Ed. Engl.,30, 1501 (1991);

    Google Scholar 

  5. P. A. Anderson and P. P. Edwards,J. Chem. Soc., Chem. Commun., 915 (1991);

  6. P. A. Anderson, R. J. Dancer, and P. P. Edwards,J. Chem. Soc., Chem. Commun., 914 (1991).

  7. X. Liu and J. K. Thomas,Langmuir,8, 1750 (1992).

    Google Scholar 

  8. R. M. Barrer and J. F. Cole,J. Phys. Chem. Solids,29, 1755 (1968).

    Google Scholar 

  9. V. I. Srdanov, K. Haug, H. Metiu, and G.D. Stucky,J. Phys. Chem.,96, 9039 (1992).

    Google Scholar 

  10. J. B. A. F. Smeulders, M. A. Hefni, A. A. K. Klassen, E. de Boer, U. Westphal, and G. Geismar,Zeolites,7, 347 (1987)

    Google Scholar 

  11. G. D. Stucky, L. Iton, T. Morrison, G. Shenoy, S. Suib, and R. P. Zerger,J. Mol. Catal.,27, 71–80 (1980);J. Chem. Phys.,80, 2203 (1984).

    Google Scholar 

  12. T. L. Barr, L. M. Chen, M. Mohsenian, and M. A. Lishka,J. Am. Chem. Soc.,110, 7962 (1988).

    Google Scholar 

  13. X. Liu, K. K. Iu, and J. K. Thomas,Chem. Phys. Lett.,224, 31 (1994).

    Google Scholar 

  14. J. A. Rabo, C. L. Angell, P. H. Kasai and V. Schomaker,Discuss. Faraday Soc.,41, 328 (1966)

    Google Scholar 

  15. P. P. Edwards, M. R. Harrison, J. Klinowski, S. Ramdas, J. M. Thomas, D. C. Johnson, and C. J. Page,J. chem. Soc., Chem. Commun., 982 (1984)

  16. J. Dye,J. Phys. Chem.,84, 1084 (1980)

    Google Scholar 

  17. P. A. Anderson and P. P. Edwards,J. Am. Chem. Soc.,114, 10608 (1992).

    Google Scholar 

  18. T. Sun and K. Seff,J. Phys. Chem.,98, 10156 (1994).

    Google Scholar 

  19. P. A. Anderson, R. J. Singer, and P. P. Edwards,J. Chem. Soc., Chem. Commun., 914 (1994).

  20. A. Stein, P. M. Macdonald, G. A. Ozin, and G. D. Stucky,J. Phys. Chem.,94, 6943 (1990).

    Google Scholar 

  21. R. Jelinek, B. F. Chmelka, A. Stein, and G. A. Ozin,J. Phys. Chem.,96, 6744–6752 (1992)

    Google Scholar 

  22. S. H. Song, Y. Kim, and K. SeffJ. Am. Chem. Soc.,97, 10139 (1993);

    Google Scholar 

  23. N. H. Heo and K. Seff,J. Am. Chem. Soc.,109, 7986 (1987); J. Chem. Soc., Chem. Commun., 1225 (1987);Zeolites,12, 819 (1992);

    Google Scholar 

  24. N. H. Heo, C. Dejsupa, and K. Seff,J. Phys. Chem.,91, 3943 (1987);Zeolites,9, 146 (1989).

    Google Scholar 

  25. S. H. Song, U. S. Kim, Y. Kim, and K. Seff,J. Phys. Chem.,96, 10937 (1992).

    Google Scholar 

  26. S. H. Song, Y. Kim, and K. Seff,J. Phys. Chem.,95, 9919 (1991).

    Google Scholar 

  27. K. K. Iu and J. K. Thomas,J. Phys. Chem.,95, 506 (1991);Colloids Surf.,63, 39 (1992).

    Google Scholar 

  28. K. B. Yoon and J. K. Kochi,J. Chem. Soc., Chem. Commun., 510 (1988).

  29. L. R. M. Matens, P. J. Grobet, and P. A. Jacobs,Nature,315, 568 (1985).

    Google Scholar 

  30. B. Xu, X. Chen, and L. Kevan,J. Chem. Soc., Faraday Trans.,87, 3157 (1991).

    Google Scholar 

  31. K. Haug, V. I. Srdanov, G. D. Stucky, and H. Metiu,J. Chem. Phys.,96, 3495 (1992).

    Google Scholar 

  32. N. P. Blake, V. Srdanov, G. D. Stucky, and H. Metiu,J. Phys. Chem., in press.

  33. P. Sen, C. N. R. Rao, and J. M. Thomas,J. Mol. Struct.,146, 1711 (1986).

    Google Scholar 

  34. R. D. Shannon,Acta Crystallogr.,A32, 751 (1976).

    Google Scholar 

  35. N. P. Blake and H. Metiu,J. Chem. Phys., submitted.

  36. N. P. Blake and H. Metiu,J. Phys. Chem, to be submitted.

  37. N. P. Blake, V. I. Srdanov, G. D. Stucky, and H. Metiu,Phys. Rev. Lett., to be submitted.

  38. A. Monnier, G. D. Stucky, and H. Metiu,J. Chem. Phys. 100, 6944 (1994).

    Google Scholar 

  39. V. I. Srdanov and G. D. Stucky,in preparation.

  40. P. P. Edwards, L. J. Woodhall, P. A. Anderson, A. R. Armstrong, and M. Slaski,Chem. Revs., 305 (1993).

  41. P. P. Edwards and M. J. Sienko,J. Am. Chem. Soc.,103, 2697 (1981).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blake, N.P., Stucky, G.D. Alkali-metal clusters as prototypes for electron solvation in zeolites. J Incl Phenom Macrocycl Chem 21, 299–324 (1995). https://doi.org/10.1007/BF00709420

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00709420

Keywords

Navigation