Skip to main content
Log in

Temperature acclimation in brook trout muscle: Adenine nucleotide concentrations, phosphorylation state and adenylate energy charge

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

Cold acclimation in fish is associated with an elevation in metabolic rate. The present study investigates the role of adenine nucleotides and related compounds in metabolic regulation following temperature acclimation. Brook trout (Salvelinus fontinalis) were acclimated for 10 weeks to either +4°C or +24°C. Both groups of fish were exercised at 2.5 body lengths s−1 for 2 weeks prior to sacrifice in order to control for differences in spontaneous activity.

Concentrations of ATP, ADP, AMP, P i and PC were approximately 2-fold higher in white than red muscles. Temperature acclimation had little effect on total adenine nucleotide concentration in either muscle type. In white fibres acclimation to 4°C results in a 39% increase in [ADP] and [AMP], a 35% decrease in [PC] (phosphorylcreatine), and no significant change in [P i ]. In contrast temperature has little effect on concentrations of these compounds in red muscle.

Parameters of metabolic control — adenylate energy charge ([ATP]+0.5 [ADP]/[ATP]+[ADP]+[AMP]), phosphorylation state ([ATP]/[ADP]·[P i ]), and the ratios [ATP]∶[ADP] and [ATP]∶[AMP] — were significantly lower in cold- than warm-acclimated white muscle. The observed changes in phosphorylation state and [ATP]∶[AMP] are consistent with an increase in mitochondrial respiration and glycolysis, respectively.

In conclusion, changes in metabolites may be an important factor in producing an enhanced metabolic rate in cold-acclimated fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson, D.E.: The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry7, 4030–4034 (1968a)

    Google Scholar 

  • Atkinson, D.E.: Citrate and the citrate cycle in the regulation of energy metabolism. Biochem. Soc. Symp.27, 23–40 (1968b)

    Google Scholar 

  • Atkinson, D.E.: Cellular energy metabolism and its regulation. New York: Academic Press 1977

    Google Scholar 

  • Beis, I., Newsholme, E.A.: The contents of adenine nucleotides, phosphagens and some glycolytic intermediates in resting muscles from vertebrates and invertebrates. Biochem. J.152, 23–32 (1975)

    Google Scholar 

  • Bullock, T.H.: Compensation for temperature in the metabolism and activity of poikilotherms. Biol. Rev. Cambridge Philos. Soc.30, 311–342 (1955)

    Google Scholar 

  • Cohen, P.: Control of enzyme activity. London: Chapman and Hall 1976

    Google Scholar 

  • Cohen, P.: The hormonal control of glycogen metabolism in mammalian muscle by multivalent phosphorylation. Biochem. Soc. Trans.7, 459–480 (1979)

    Google Scholar 

  • Driedzic, W.R., Hochachka, P.W.: Control of energy metabolism in fish white muscle. Am. J. Physiol.230, 579–582 (1976)

    Google Scholar 

  • Driedzic, W.R., Hochachka, P.W.: Metabolism in fish during exercise. In: Fish physiology, Vol. 7. Hoar, W.S., Randall, D.J. (eds.), pp. 503–544. New York: Academic Press 1978

    Google Scholar 

  • Erecinska, M., Stubbs, M., Miyata, Y., Ditre, C.M., Wilson, D.F.: Regulation of cellular metabolism by intracellular phosphate. Biochim. Biophys. Acta462, 20–35 (1977)

    Google Scholar 

  • Fiske, J.H., Subbarow, J.: The colorimetric determination of phosphorus. J. Biol. Chem.66, 375–400 (1925)

    Google Scholar 

  • Fraser, D.I., Dyer, W.J., Weinstein, H.M., Dingle, J.R., Hines, J.A.: Glycolytic metabolites and their distribution at death in the white and red muscle of cod following various degrees of antemortem activity. Can. J. Biochem.44, 1015–1033 (1966)

    Google Scholar 

  • Freed, J.M.: Properties of muscle phosphofructokinase of cold- and warm-acclimatedCarassius auratus. Comp. Biochem. Physiol.39B, 747–764 (1971)

    Google Scholar 

  • Guppy, M., Hulbert, W.C., Hochachka, P.W.: Metabolic sources of heat and power in tuna muscles. II. Enzyme and metabolite profiles. J. Exp. Biol.82, 303–320 (1979)

    Google Scholar 

  • Guynn, R.W., Veloso, D., Veech, R.L.: Enzymatic determination of inorganic phosphate in the presence of creatine phosphate. Anal. Biochem.45, 277–285 (1972)

    Google Scholar 

  • Hazel, J.R., Prosser, C.L.: Molecular mechanisms of temperature compensation in poikilotherms. Physiol. Rev.54, 620–677 (1974)

    Google Scholar 

  • Hazel, J.R., Garlick, W.S., Sellner, P.A.: The effects of assay temperature upon the pH optima of enzymes from poikilotherms: A test of the imidazole alphastal hypothesis. J. Comp. Physiol.123, 97–104 (1978)

    Google Scholar 

  • Hill, D.K.: The location of adenine nucleotides in the striated muscle of the toad. J. Cell Biol.20, 435–458 (1964)

    Google Scholar 

  • Hochachka, P.W., Hayes, F.R.: The effect of temperature acclimation on pathways of glucose metabolism in the trout. Can. J. Zool.40, 261–270 (1962)

    Google Scholar 

  • Jankowsky, H.D.: Versuche zur Adaptation der Fische im normalen Temperaturbereich. Helgol. Wiss. Meeresunters.18, 317–362 (1968)

    Google Scholar 

  • Jaworek, D., Gruber, W., Bergmeyer, H.U.: Adenosine-5′-triphosphate. Determination with 3-phosphoglycerate kinase. In: Methods of enzymatic analysis, Vol. 4. 2nd edn. Bergmeyer, H.U. (ed.), pp. 2097–2101. Weinheim: Verlag Chemie 1974a

    Google Scholar 

  • Jaworek, D., Gruber, W., Bergmeyer, H.U.: Adenosine-5′-diphosphate and adenosine-5′-monophosphate. In: Methods of enzymatic analysis, Vol. 4, 2nd ed. Bergmeyer, H.U. (ed.), pp 2127–2131 Weinheim: Verlag Chemie 1974b

    Google Scholar 

  • Johnston, I.A.: Specialisation of fish muscle. In: Development and specialisation of muscle. Goldspink, D. (ed.) Society of Experimental Biology, Seminar Series Symposium, Cambridge: University Press (in press) 1980

    Google Scholar 

  • Johnston, I.A., Maitland, B.: Temperature acclimation in Crucian carp: A morphometric analysis of muscle fibre ultrastructure. J. Fish Biol. (in press) 1980

  • Johnston, I.A., Moon, T.W.: Endurance exercise training in the fast and slow muscles of a teleost fish (Pollachius virens). J. Comp. Physiol.135, 147–156 (1980a)

    Google Scholar 

  • Johnston, I.A., Moon, T.W.: Exercise training in skeletal muscles of Brook trout. J. Exp. Biol. (in press) (1980b)

  • Jones, N.R., Murray, J.: The acid-soluble nucleotides of codling (Godus callarias) muscle. Biochem. J.77, 567–575 (1960)

    Google Scholar 

  • Künnemann, H., Laudien, H., Precht, H.: Der Einfluß von Temperaturänderungen auf Enzyme der Fischmuskulatur. Versuche mit GoldorfenIdus idus. Mar. Biol.7, 71–81 (1970)

    Google Scholar 

  • Lamprecht, W., Trautschold, I.: Adenosine-5′-triphosphate — Determination with hexokinase and glucose-6-phosphate dehydrogenase. In: Methods of enzymatic analysis, Vol. 4, 2nd edn. Bergmeyer, H.U. (ed.), pp. 2101–2110. Weinheim: Verlag Chemie 1974

    Google Scholar 

  • Lännergren, J.: Location of ultraviolet-adsorbing substance in isolated skeletal muscle fibres. The effect of stimulation. J. Physiol. (London)270, 785–800 (1977)

    Google Scholar 

  • Lehmann, J.: Veranderungen der Enzymaktivitäten nach einen Wechsel der Adaptationstemperatur, untersucht am Seitenrumfplumskel des Goldfisches (Carassius auratus L.). Int. Rev. Fes. Hydrobiol.55, 763–781 (1970)

    Google Scholar 

  • Longerich, L.L., Feltham, L.A.W.: Changes in muscle phosphofructokinase in temperatur acclimated winter fluonder (Pseudopleuronectus americanus). J. Thermal Biol.3, 61–67 (1978)

    Google Scholar 

  • Magnall, D., Nesbitt, C.: Studies of the regulation of rabbit muscle phosphofructokinase by the adenine nucleotides. Int. J. Biochem.9, 523–529 (1978)

    Google Scholar 

  • Newbold, R.P., Scopes, R.K.: Postmortem glycolysis in ox skeletal muscle. Effect of temperature on the concentrations of glycolytic intermediates and cofactors. Biochem. J.105, 127–136 (1967)

    Google Scholar 

  • Newsholme, E.A.: The role of the fructose 6-phosphate/fructose 1,6-diphosphate cycle in metabolic regulation and heat generation. Biochem. Soc. Trans.4, 978–984 (1976)

    Google Scholar 

  • Newsholme, E.A., Start, C.: Regulation in metabolism. London: John Wiley and Sons 1973

    Google Scholar 

  • Newsholme, E.A., Zammit, V.A., Crabtree, B.: The role of glucose and glycogen as fuels for muscle. Biochem. Soc. Trans.6, 512–520 (1978)

    Google Scholar 

  • Ottaway, J.H., Mowbray, J.: The role of compartmentalisation in the control of glycolysis. In: Current topics in cellular regulation, Vol. 12. Horecker, B.L., Stadtman, E.R. (eds.), pp. 107–207 London: Academic Press 1977

    Google Scholar 

  • Precht, H., Christophersen, J., Hensel, H., Larcher, W.: Temperature and life. Berlin, Heidelberg, New York: Springer 1973

    Google Scholar 

  • Pye, V.I., Wieser, W., Zech, M.: The effect of season and experimental temperature on the rates of oxidative phosphorylation of liver and muscle mitochondria from the tench (Tinca tinca). Comp. Biochem. Physiol.54B, 13–20 (1976)

    Google Scholar 

  • Rahim, Z.H.A., Perrett, D., Griffiths, J.R.: Skeletal muscle purine nucleotide levels in normal and phosphorylase kinase deficient mice. FEBS Lett.69, 203–206 (1976)

    Google Scholar 

  • Rockstein, M., Herron, P.W.: Colorimetric determination of inorganic phosphate in microgram quantities. Anal. Chem.23, 1500–1501 (1951)

    Google Scholar 

  • Saito, T., Arai, K.: Further studies on inosinic acid formation in carp muscle. Bull. Jpn. Soc. Sci. Fish.23, 579–583 (1958)

    Google Scholar 

  • Saito, T., Arai, K., Yajima, T.: Changes in purine nucleotides of red lateral muscles of rainbow trout. Nature (London)184, 1415 (1959)

    Google Scholar 

  • Seraydarian, K., Mommaerts, W.F.H.M., Wallner, A.: The amount and compartmentalisation of adenosine diphosphate in muscle. Biochim. Biophys. Acta65, 443–460 (1962)

    Google Scholar 

  • Shen, L.C., Fall, L., Walton, G.M., Atkinson, D.E.: Interaction between energy charge and metabolic modulation in the regulation of enzymes of amphibolic sequences. Phosphofructokinase and pyruvate dehydrogenase. Biochemistry7, 4041–4045 (1968)

    Google Scholar 

  • Sidell, B.D.: Turnover of cytochromec in skeletal muscle of green sunfish (Lepomis cyanellus R.) during thermal acclimation. J. Exp. Zool.199, 233–250 (1977)

    Google Scholar 

  • Smit, H., Berg, R.J. Van Den, Kijn-Den Hartog, I.: Some experiments on thermal acclimation in the goldfish (Carassius auratus L.). Neth. J. Zool.24, 32–49 (1974)

    Google Scholar 

  • Sokal, R.R., Rohlf, F.J.: Biometry. The principles and practice of statistics of biological research. San Francisco: Freeman 1969

    Google Scholar 

  • Somero, G.N.: Temperature adaptation of enzymes: biological optimisation through structure-function compromises. Annu. Rev. Ecol. Syst.9, 1–29 (1978)

    Google Scholar 

  • Somero, G.N., Hochachka, P.W.: Isoenzymes and short-term temperature compensation in poikilotherms: activation of lactate dehydrogenase isoenzymes by temperature decreases. Nature (London)223, 194–195 (1969)

    Google Scholar 

  • Sugden, P.H., Newsholme, E.A.: The effects of ammonium, inorganic phosphate and potassium ions on the activity of phosphofructokinases from muscle and nervous tissues of vertebrates and invertebrates. Biochem. J.150, 113–122 (1975)

    Google Scholar 

  • Thillart, G. Van Den, Kesbeke, F., Waarde, A. Van: Influence of anoxia on the energy metabolism of goldfish (Carassius auratus L.). Comp. Biochem. Physiol.55A, 329–336 (1976)

    Google Scholar 

  • Thillart, G. Van Den, Modderkolk, J.: The effect of acclimation temperature on the activation energies of state III respiration and on the unsaturation of membrane lipids of goldfish mitochondria. Biochim. Biophys. Acta510, 38–51 (1978)

    Google Scholar 

  • Thillart, G. Van Den, Kesbeke, F., Waarde, A. Van: Anaerobic energy-metabolism of goldfish (Carassius auratus L.). Influence of hypoxia and anoxia on phosphorylated compounds and glycogen. J. Comp. Physiol.136, 45–52 (1980)

    Google Scholar 

  • Wilson, D.F., Erecinska, M., Dutton, P.L.: Thermodynamic relationships in mitochondrial oxidative phosphorylation. Annu. Rev. Biophys. Bioeng.3, 203–230 (1974)

    Google Scholar 

  • Wilson, D.F., Owen, C.S., Holian, A.: Control of mitochondrial respiration: a quantitative evaluation of the roles of cytochromec and oxygen. Arch. Biochem. Biophys.182, 749–762 (1977)

    Google Scholar 

  • Wilson, F.R.: Quantitative changes of enzymes of the goldfish (Carassius auratus L.) in response to temperature acclimation. An immunological approach. Ph. D. thesis, University of Illinois (1973)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walesby, N.J., Johnston, I.A. Temperature acclimation in brook trout muscle: Adenine nucleotide concentrations, phosphorylation state and adenylate energy charge. J Comp Physiol B 139, 127–133 (1980). https://doi.org/10.1007/BF00691027

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00691027

Keywords

Navigation