Skip to main content
Log in

Breakdown and formation of high-energy phosphates and octopine in the adductor muscle of the scallop,Chlamys opercularis (L.), during escape swimming and recovery

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1.

    The scallopChlamys opercularis uses jet propulsion swimming as a means of escape if attacked by the star fishMarthasterias glacialis. The energy for these rapid movements is supplied by the depletion of the phosphagen phospho-L-arginine. During escape swimming the energy charge of the adductor muscle drops from 0.93 to 0.42. Due to the decrease of phospho-L-arginine from 20.4 to 1.5 μmol/g fresh wt there is a concomitant increase of L-arginine from 14.7 to 34.7 μmol/g fresh wt. No octopine, D- or L-lactate was accumulated in exhausted animals.

  2. 2.

    During the first 30 min of recovery in aerated sea water, octopine, instead of lactate, is synthesized in adductor muscles. The energy charge rises to 0.92. Within 60 min the phospho-L-arginine pool is replenished and half of the accumulated octopine again metabolized.

  3. 3.

    During anaerobic revovery, i.e. when the scallops are kept exposed to air, octopine synthesis is pronounced (7.5 μmol/g fresh wt/h). The energy charge increases to 0.85. However, under these conditions no phospho-L-arginine is formed.

  4. 4.

    There is no evidence for transport of octopine from the adductor muscle to other tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson, D.E.: the energy charge of the adenylate pool as a regulative parameter. Interaction with feedback modifiers. Biochemistry7, 4030–4034 (1968)

    Google Scholar 

  • Atkinson, D.E., Walton, G.M.: Adenosine triphosphate conservation in metabolic regulation. Rat liver citrate cleavage enzyme. J. biol. Chem.242, 3239–3241 (1967)

    Google Scholar 

  • Beis, I., Newsholme, E.A.: The contents of adenine nucleotides, phosphagens and some glycolytic intermediates in resting muscles from vertebrates and invertebrates. Biochem. J.152, 23–32 (1975)

    Google Scholar 

  • Buddenbrock, W.v.: Untersuchungen über die Schwimmbewegungen und Statocysten der Gattung Pecten. Sitzungsber. Heidelberger Akad. Wiss.28, 1–24 (1911)

    Google Scholar 

  • Buddenbrock, W.v.: Die “fliegenden Kamm-Muscheln”. Umschau59, 124 (1959)

    Google Scholar 

  • Embden, G., Hirsch-Kauffmann, H., Lenhartz, E., Deuticke, H.J.: Über den Verlauf der Milchsäurebildung beim Tetanus. Hoppe Seylers Z. physiol. Chem.151, 209–231 (1926)

    Google Scholar 

  • Furia, R.R. de, Kuschmerick, M.J.: ATP utilization associated with recovery metabolism in anaerobic frog muscle Amer. J. Physiol.232, 30–36 (1977)

    Google Scholar 

  • Grieshaber, M., Gäde, G.: The biological role of octopine in the squid,Loligo vulgaris (Lamarck). J. comp. Physiol.108, 225–232 (1976a)

    Google Scholar 

  • Grieshaber, M., Gäde, G.: Die biologische Bedeutung des Octopins bei Mollusken. Verh. dtsch. Zool. Ges. 222 (1976b)

  • Grieshaber, M., Gäde, G.: Energy supply and the formation of octopine in the adductor muscle of the scallopPecten jacobaeus. Comp. Biochem. Physiol.58B, 249–252 (1977)

    Google Scholar 

  • Grieshaber, M., Kronig, E., Koormann, R.: A photometric estimation of phospho-L-arginine, arginine and octopine using homogenous octopine dehydrogenase isoenzyme 2 from the squid,Loligo vulgaris. Hoppe Seylers Z. physiol. Chem.359, 133–136 (1978)

    Google Scholar 

  • Gutmann, I., Wahlefeld, W.A.: L-Lactat. Bestimmung mit Lactat-Dehydrogenase und NAD. In: Methoden der enzymatischen Analyse, Bd. 2 (ed. H.U. Bergmeyer), pp. 1510–1514. Weinheim: Verlag Chemie 1974

    Google Scholar 

  • Hochachka, P.W., Hartline, P.H., Fields, J.H.A.: Octopine as an endproduct of anaerobic glycolysis in the chambered Nautilus. Science195, 72–74 (1977)

    Google Scholar 

  • Jaworek, D., Gruber, W., Bergmeyer, H.U.: Adenosin-5′-diphosphat und Adenosin-5′-monophosphat. In: Methoden der enzymatischen Analyse, Bd. 2 (ed. H.U. Bergmeyer), pp. 2179–2181. Weinheim: Verlag Chemie 1974

    Google Scholar 

  • Lamprecht, W., Trautschold, I.: Bestimmung von ATP mit Hexokinase und Glucose-6-phosphat-Dehydrogenase In: Methoden der enzymatischen Analyse, Bd. 2 (ed. H.U. Bergmeyer), pp. 2151–2159. Weinheim: Verlag Chemie 1974

    Google Scholar 

  • Lundsgaard, E.: Über die Energetik der anaeroben Muskelkontraktion. Biochem. Z.233, 322–343 (1931)

    Google Scholar 

  • Moore, J.D., Trueman, E.R.: Swimming of the scallopChlamys opercularis (L.). J. exp. mar. Biol. Ecol.6, 179–185 (1971)

    Google Scholar 

  • Regnouf, F., Thoai, v.N.: Octopine and lactate dehydrogenases in molluse muscles. Comp. Biochem. Physiol.32, 411–416 (1970)

    Google Scholar 

  • Thoai, v.N., Robin, Y.: Sur la biogenese de l'octopine dans différents tissus dePecten maximus L. Bull. Soc. Chim. Biol.41, 735–742 (1959)

    Google Scholar 

  • Yonge, C.M.: The evolution of the swimming habit in the Lamellibranchia. Mém. Mus. r. Hist. nat. Belg., 2mc Sér.3, 77–100 (1956)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grieshaber, M. Breakdown and formation of high-energy phosphates and octopine in the adductor muscle of the scallop,Chlamys opercularis (L.), during escape swimming and recovery. J Comp Physiol B 126, 269–276 (1978). https://doi.org/10.1007/BF00688937

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00688937

Keywords

Navigation