Skip to main content
Log in

Thermoacoustic effects of inviscid fluids

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Thermoacoustic effects of inviscid fluids are studied with the use of linearized hydrodynamic equations. The heat flux and the acoustic energy source due to acoustic waves are related to entropy oscillations due to irreversible processes, and are evaluated for a plane wave in a long cylindrical tube with the boundary condition that the local oscillation of the temperature is absent at the wall surface. The heat flux and acoustic energy source obtained in the standing wave approximation give qualitative explanations of heat pumping and similar experiments and stability limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Clement and J. Gaffney,Adv. Cryogen. Eng. 1, 302–306 (1954).

    Google Scholar 

  2. J. D. Bannister,Bull. Int. Inst. Refrig. 5, 127–135 (1966).

    Google Scholar 

  3. Yu. P. Dmitrevskiy and Yu. M. Mel'nik,Cryogenics 16, 25–28 (1976).

    Google Scholar 

  4. A. Tominaga, T. Yazaki and Y. Narahara,Cryogen. Eng. (in Japanese)14, 122–127 (1979).

    Google Scholar 

  5. T. Yazaki, A. Tominaga, and Y. Narahara,Cryogenics 19, 393–396 (1979).

    Google Scholar 

  6. T. Yazaki, A. Tominaga, and Y. Narahara,J. Low Temp. Phys. 41, 45–60 (1980).

    Google Scholar 

  7. T. Yazaki, A. Tominaga, and Y. Narahara,Phys. Lett. 79A, 407–409 (1980).

    Google Scholar 

  8. W. E. Gifford and R. C. Longsworth,Int. Adv. Cryogen. Eng. 10, 69–79 (1965).

    Google Scholar 

  9. W. E. Gifford and R. C. Longsworth,Adv. Cryogen. Eng. 11, 171–179 (1966).

    Google Scholar 

  10. W. E. Gifford and G. H. Kyanka,Adv. Cryogen. Eng. 12, 619–630 (1967).

    Google Scholar 

  11. R. C. Longsworth,Adv. Cryogen. Eng. 12, 608–618 (1967).

    Google Scholar 

  12. P. Merkli and H. Thomann,J. Fluid Mech. 70, 161–177 (1975).

    Google Scholar 

  13. H. A. Kramers,Physica 15, 971–984 (1949).

    Google Scholar 

  14. D. ter Haar, inComptes Rendus de la Conference de Physique des Basses Températures (Paris, 1955), pp. 347–349.

  15. N. Rott,Z. Angew. Math. Phys. 20, 230–243 (1969).

    Google Scholar 

  16. N. Rott,Z. Angew. Math. Phys. 24, 54–72 (1973).

    Google Scholar 

  17. N. Rott,Z. Agnew. Math. Phys. 26, 43–49 (1975).

    Google Scholar 

  18. T. Yazaki, A. Tominaga, and Y. Narahara,J. Heat Transfer, to be published.

  19. A. Tominaga, T. Yazaki, and Y. Narahara, inProceedings of the Ninth International Cryogenic Engineering Conference, Kobe, 1982, K. Yasukochi and H. Nagano, eds. (Butterworth, 1982), pp. 798–801.

  20. L. D. Landau and E. M. Lifshitz,Fluid Mechanics (Pergamon Press, 1979), Chapter VIII.

  21. S. Temkin,Phys. Fluid 11, 960–963 (1968).

    Google Scholar 

  22. D. B. Cruikshank, Jr.,J. Acoust. Soc. Am. 52, 1024–1036 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tominaga, A., Narahara, Y. & Yazaki, T. Thermoacoustic effects of inviscid fluids. J Low Temp Phys 54, 233–245 (1984). https://doi.org/10.1007/BF00683276

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00683276

Keywords

Navigation