Skip to main content
Log in

Nuclear spin-lattice relaxation in metals at low temperatures

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In NMR experiments performed on metals at low temperatures, the analysis to obtain the nuclear spin-lattice relaxation time τ1 can be quite complicated. The electronic heat capacity ultimately becomes less than that of the nuclear spins, and the characteristic times for heat flow through the various resistances between the nuclear spins and the thermal bath can become long relative to τ1. This makes it necessary to solve the full set of coupled differential equations describing the thermal relaxation. This problem has been examined because τ1 is used as a thermometric parameter, and we consider the cases when the radiofrequency field penetrates the sample completely (powders and foils) and when only the skin-depth nuclei are excited (bulk specimens). Using our theoretical model, we analyze experimental results for platinum powder and a thallium bulk sample and obtain consistent values for κ=τ1 T over a wide range of experimental conditions, even when thermal bottlenecks occur and the apparent relaxation time is much longer than τ1. These values are κ(Pt)=(34.2±0.6)×10−3 sec K and κ(Tl)=(4.37±0.08)×10−3 sec K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Abragam,Principles of Nuclear Magnetism (Oxford University Press, Oxford, 1961).

    Google Scholar 

  2. J. Korringa,Physica 16, 601 (1950).

    Google Scholar 

  3. R. Ling, E. R. Dobbs, and J. Saunders,Phys. Rev. B 33, 629 (1986).

    Google Scholar 

  4. F. Pobell, private communication.

  5. O. Avenel, P. M. Berglund, and E. Varoquaux, unpublished; see ref. 3

    Google Scholar 

  6. M. Veuso,Acta Polytech. Scand. 122, 7 (1978).

    Google Scholar 

  7. C. Kittel,Phys. Rev. 104, 1807 (1956).

    Google Scholar 

  8. R. L. Peterson,Phys. Rev. 137, A1444 (1965).

    Google Scholar 

  9. J. P. Harrison,J. Low Temp. Phys. 37, 467 (1979).

    Google Scholar 

  10. A. Abragam and B. Bleaney,Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, Oxford, 1970).

    Google Scholar 

  11. W. R. Smythe,Static and Dynamic Electricity (McGraw-Hill, New York, 1939).

    Google Scholar 

  12. D. D. Osheroff and R. C. Richardson, inProceedings of the 17th International Conference on Low Temperature Physics (North-Holland, Amsterdam, 1984), p. 751.

    Google Scholar 

  13. T. Perry, K. De Conde, J. A. Sauls, and D. L. Stein,Phys. Rev. Lett. 48, 1831 (1982).

    Google Scholar 

  14. A. C. Anderson, J. I. Connolly, O. E. Vilches, and J. C. Wheatley,Phys. Rev. 147, 86 (1966).

    Google Scholar 

  15. W. R. Abel, R. T. Johnson, J. C. Wheatley, and W. Zimmermann,Phys. Rev. Lett. 18, 737 (1967).

    Google Scholar 

  16. G. Eska, E. Schuberth, and B. Turrell,Phys. Lett. A 115, 413 (1986).

    Google Scholar 

  17. L. E. Drain,J. Phys. Chem. Solids 24, 379 (1963).

    Google Scholar 

  18. U. Angerer and G. Eska,Cryogenics 24, 521 (1984).

    Google Scholar 

  19. G. Eska and E. Schuberth, to be published.

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turrell, B.G., Eska, G., Masuhara, N. et al. Nuclear spin-lattice relaxation in metals at low temperatures. J Low Temp Phys 70, 151–172 (1988). https://doi.org/10.1007/BF00683249

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00683249

Keywords

Navigation