Skip to main content
Log in

Effect of electrolyte type on the electrokinetic behavior of carboxylated polystyrene model colloids

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Carboxylated polystyrene latex particles were prepared by emulsifier-free emulsion polymerization of styrene using an azoinitiator (ACPA), which provides carboxyl end groups on the latex surface. Two latexes were characterized using TEM, PCS, conductimetric and potentiometric titrations, and electrophoretic mobility. To determine the hydrophobic or hydrophilic character of these latexes, the maximum adsorption of a nonionic surfactant (Triton X-100) was also studied and compared with other type of latexes. The electrophoretic mobility of these functionalized model colloids was studied in the presence of various types of inorganic electrolytes. The μ e curves of these latexes exhibit a smooth maximum at an electrolyte concentration of around 10−3 and 5·10−3 M for 1∶1, 2∶1 and 1∶2 electrolytes. When a 3∶1 electrolyte (LaCl3) was used, the electrophoretic mobility changed to positive values at high concentration due to the specific adsorption of lanthanum species. In general, the surface characteristics of these carboxylated latexes are very different in comparison to other latexes with the same functionality because the carboxyl groups are provided by the initiator, while in most of the cases these groups are provided by ionic comonomers (acrylic, methacrylic acids, etc.) used in the copolymerization with styrene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tamai H, Fujii A, Suzawa T (1987) J Colloid Interface Sci 116:37

    Google Scholar 

  2. Rembaum A, Yen SPS, Cheong E, Wallace S, Molday RS, Gordon IL, Dreyer WJ (1976) Macromol 9:328

    Google Scholar 

  3. Tamai H, Hasegawa M, Suzawa T (1989) J Appl Polym Sci 38:403

    Google Scholar 

  4. Martin-Rodriguez A, Cabrerizo MA, Hidalgo-Alvarez R (1994) Colloids Surfaces A: Physicochem Eng Aspects 92:113

    Google Scholar 

  5. Bastos-González D, Ortega-Vinuesa JL, De las Nieves FJ, Hidalgo-Alvarez R (1995) J Colloid Interface Sci 176:232

    Google Scholar 

  6. Guthrie WH (1985) Ph D Dissertation, Lehigh University, USA

  7. Shubin VA, Hunter RJ, O'Brien (1993) J Colloid Interface Sci 176:232

    Google Scholar 

  8. Martín-Rodríguez A (1993) Ph D Dissertation, University of Granada, Spain

  9. Bastos D, de las Nieves FJ (1993) Colloid Polym Sci 271:860

    Google Scholar 

  10. de las Nieves FJ, Daniels ES, El-Aasser MS (1991) Colloids Surfaces 60:107

    Google Scholar 

  11. Tamai H, Niino K, Suzawa T (1989) J Colloid Interface Sci 131:1

    Google Scholar 

  12. Zukoski CF, Saville DA (1985) J Colloid Interface Sci 107:322

    Google Scholar 

  13. Van der Put AG, Bijsterbosch BH (1983) J Colloid Interface Sci 92:499

    Google Scholar 

  14. Prescott JH, Shiau S, Rowell RL (1993) Langmuir 9:2071

    Google Scholar 

  15. Marlow BJ, Rowell RL (1991) Langmuir 7:2970

    Google Scholar 

  16. Seebergh JE, Berg JC (1995) Colloids Surfaces A: Physicochem Eng Aspects 100:139

    Google Scholar 

  17. Gittings MR, Saville DA (1995) Langmuir 11:798

    Google Scholar 

  18. Elimelech M, O'Melia CR (1990) Colloids Surfaces 44:165

    Google Scholar 

  19. Van Streun KH, Belt WJ, Piet P, German AL (1991) Eur Polym J 27:931

    Google Scholar 

  20. Goodwin JW, Hearn J, Ho CC, Ottewill RH (1974) Z Z Polym 252:464

    Google Scholar 

  21. Baran AA, Dukhina LM, Soboleva NM, Chechik OS (1981) Kolloid Z 43:211

    Google Scholar 

  22. Hidalgo-Alvarez R (1991) Adv Colloid Interface Sci 34:217

    Google Scholar 

  23. Moleón-Baca JA, Rubio-Hernández FJ, de las Nieves, Hidalgo-Alvarez R (1991) J Non-Equil Thermodyn 16:187

    Google Scholar 

  24. Hunter RJ (1981) In: Ottewill RH, Rowel RL (eds) Zeta-Potential in Colloid Science. Academic Press, New York

    Google Scholar 

  25. Midmore BR, Hunter RJ (1988) J Colloid Interface Sci 122:521

    Google Scholar 

  26. Chow RS, Takamura K (1988) J Colloid Interface Sci 125:226

    Google Scholar 

  27. Shirahama H, Suzawa T (1984) Polymer J 16:795

    Google Scholar 

  28. Ottewill RH, Shaw JN (1968) J Colloid Interface Sci 26:110

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bastos, D., de las Nieves, F.J. Effect of electrolyte type on the electrokinetic behavior of carboxylated polystyrene model colloids. Colloid Polym Sci 274, 1081–1088 (1996). https://doi.org/10.1007/BF00658373

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00658373

Key words

Navigation