Skip to main content
Log in

Individual equivalent conductances of the major ions in seawater

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A radioactive tracer method has been used to determine the trnasference numbers of eight major ions in seawater of salinity 38.4 g-kg−1 at 25°C. Data are presented for Na+, K+, Ca2+, and Mg2+ cations and Cl, Br, SO 2− 4 , and HCO 3 anions, which contribute to the overall electrical conductance by more than 99%. The results have been checked by electrophoretic migrations on esters of cellulose strips providing independent values of the ratios of ionic mobilities to be compared to previous estimations. Through the individual ionic contributions to the electrical conductance, a method for calculating seawater density is proposed; this method is based on a nine-constitutents seawater model in which relative ionic concentrations can deviate from that of standard seawater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Poisson and J. Chanu,AGARD Conf. Proc. No. 77, 24 (1970).

    Google Scholar 

  2. K. Park,Deep Sea Res. 11, 729 (1964).

    Google Scholar 

  3. M. Spiro, Transference Numbers, inPhysical Methods of Chemistry, A. Weissberger and B. W. Rossiter, eds., Part IV (Interscience, New York, 1971).

    Google Scholar 

  4. M. Périé, J. Périé, and M. Chemla,Electrochim. Acta 19, 753 (1974).

    Google Scholar 

  5. M. Périé, J. Périé, and M. Chemla,Electrochim. Acta 21, 739 (1976).

    Google Scholar 

  6. A. Poisson and J. Chanu,Limnol. Oceanogr.21, 853 (1976).

    Google Scholar 

  7. Z. Kniewald and Z. Pučar,Trans. Faraday Soc. 72, 987 (1976).

    Google Scholar 

  8. D. J. Currie and A. R. Gordon,J. Phys. Chem. 64, 1751 (1960).

    Google Scholar 

  9. M. Spiro,J. Chem. Phys. 42, 4060 (1965).

    Google Scholar 

  10. L. J. M. Smits and E. M. Duyvis,J. Phys. Chem. 70, 2747 (1966).

    Google Scholar 

  11. F. Culkin and J. P. Riley, inChemical Oceanography, J. P. Riley and G. Skirrow, eds. (Academic Press, London, New York, 1965), Chapter IV.

    Google Scholar 

  12. M. Périé, J. Périé, and M. Chemla,J. Chim. Phys. 65, 1284 (1968).

    Google Scholar 

  13. A. Poisson, Thesis, University of paris (1978).

  14. M. Chemla,C. R. Acad. Sci., Ser. C 263, 184 (1966).

    Google Scholar 

  15. R. A. Robinson and R. H. Stokes,Electrolyte solutions, 2nd rev. edn. (Butterworths, London, 1965), p. 463.

    Google Scholar 

  16. M. Whitfield, Seawater as an electrolyte solution, inChemical Oceanography, 2nd ed., J. P. Riley and G. Skirrow, eds. (Academic Press, London, 1975), Chapter 2.

    Google Scholar 

  17. D. M. Connors and P. K. Weyl, Limnol. Oceanogr.13, 39 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poisson, A., Périé, M., Périé, J. et al. Individual equivalent conductances of the major ions in seawater. J Solution Chem 8, 377–394 (1979). https://doi.org/10.1007/BF00646790

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00646790

Key words

Navigation