Skip to main content
Log in

The solubility of magnetite and the hydrolysis and oxidation of Fe2+ in water to 300°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The solubility of carefully characterized magnetite, Fe3O4, in dilute aqueous solutions saturated with H2 has been measured at temperatures from 100 to 300°C in a flow apparatus. Solution compositions included either HCl or NaOH molalities of up to 1 and 40 mmole-kg−1, respectively, and H2 molalities of 0.0779, 0.779, and 8.57 mmole-kg−1. The dependence of the equilibrium solubility on the pH and reduction potential were fitted to a scheme of soluble ferrous and ferric species consisting of Fe2+, FeOH+, Fe(OH)2, Fe(OH) 3 , Fe(OH)3, and Fe(OH) 4 . Solubility products from the fit, corresponding to the reactions

$$\tfrac{1}{3}Fe_3 O_4 + (2 - b)H^ + + \tfrac{1}{3}H_2 \rightleftharpoons Fe(OH)_b^{2 - b} + (4/3 - b)H_2 O$$

and

$$\tfrac{1}{3}Fe_3 O_4 + (3 - b)H^ + \rightleftharpoons Fe(OH)_b^{3 - b} + \tfrac{1}{6}H_2 + (4/3 - b)H_2 O$$

were used to derive thermodynamic constants for each species. The extrapolared value for the Gibbs energy of formation of Fe2+ at 25°C is −88.92±2.0 kJ-mole−1, consistent with standard reduction potentials in the range Eo(Fe2+)=−0.47±0.01 V. The temperature coefficient of the equilibrium Fe molality, (∂m(Fe, sat.)/∂T)m(H2).m(NaOH), changes from negative to positive as the NaOH molality is increased to the point where Fe(OH) 3 and Fe(OH) 4 predominate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. R. Tremaine, R. von Massow, and G. R. Shierman,Thermochim. Acta 19, 287 (1977).

    Google Scholar 

  2. F. H. Sweeton and C. F. Baes,J. Chem. Thermodyn. 2, 479 (1970).

    Google Scholar 

  3. G. A. Kanert, G. W. Gray, and W. G. Baldwin,The Solubility of Magnetite in Basic Solutions at Elevated Temperatures, Atomic Energy of Canada Ltd., Report AECL-5528 (1976).

  4. I. Lambert, P. Beslu, A. Lalet, and J. Montel, inThermodynamics of Nuclear Materials 1979 (International Atomic Energy Agency, Vienna, 1979), paper IAEA-SM-236/12, in press.

    Google Scholar 

  5. M. A. Styrikovich, O. F. Martynova, I. F. Kobyakov, V. L. Men'skikova, and M. I. Reznikov,Therm. Eng. 19, 127 (1972).

    Google Scholar 

  6. I.-M. Chou and H. P. Eugster,Am. J. Sci. 277, 1296 (1977).

    Google Scholar 

  7. G. R. Helz, Ph.D. Thesis, Pennsylvania State University (1971).

  8. D. A. Crerar, N. J. Susak, M. Boresik, and S. Schwartz,Geochim. Cosmochim. Acta 42, 1427 (1978).

    Google Scholar 

  9. P. R. Tremaine and J. C. LeBlanc,J. Chem. Thermodyn., in press.

  10. G. K. Johnson and J. E. Bauman, Jr.,Inorg. Chem. 17, 2774 (1978).

    Google Scholar 

  11. H. Tamura, K. Goto, and M. Nagayama,J. Inorg. Nucl. Chem. 38, 11, 3 (1976).

    Google Scholar 

  12. J. Smiltens,J. Chem. Phys. 20, 990 (1952).

    Google Scholar 

  13. N. S. McIntyre and D. G. Zetaruk,Anal. Chem. 49, 1521 (1977).

    Google Scholar 

  14. Y. L. Sandler and R. H. Kunig,Nucl. Sci. Eng. 64, 866 (1977).

    Google Scholar 

  15. P. V. Balakrishnan,Can. J. Chem. Eng. 55, 357 (1977).

    Google Scholar 

  16. D. M. Himmelblau,J. Chem. Eng. Data 5, 10 (1960).

    Google Scholar 

  17. A. E. Harvey, Jr., J. A. Smart, and E. S. Amis,Anal. Chem. 27, 2, 6 (1955).

    Google Scholar 

  18. C. F. Baes, Jr., and R. E. Mesmer,The Hydrolysis of Cations (Wiley, New York, 1976).

    Google Scholar 

  19. W. L. Marshall,Inorg. Nucl. Chem. 37, 2155 (1975).

    Google Scholar 

  20. W. L. Marshall and E. V. Jones,J. Phys. Chem. 70, 4028 (1966).

    Google Scholar 

  21. G. Olofsson and L. G. Hepler,J. Solution Chem. 4, 127 (1975).

    Google Scholar 

  22. J. W. Larson, P. Cerutti, H. K. Garber, and L. G. Hepler,J. Phys. Chem. 72, 2902 (1968).

    Google Scholar 

  23. D. D. Wagman, W. H. Evans, V. B. Parker, I. Halow, S. M. Bailey, and R. H. Schumm,Selected Values of Chemical Thermodynamic Properties, U.S. Natl. Bur. Stand. Tech. Notes 270–3 (1968) and 270–4 (1969).

  24. P. Schindler,Advances in Chemistry, R. F. Gould, ed. (Am. Chem. Soc., 1967), Vol. 67, Chapter 9.

  25. K. K. Kelley and E. G. King,Entropies of the Elements and Inorganic Compounds, U.S. Bur. Mines Bull. 592 (1961).

  26. E. D. Eastman and R. M. Evans,J. Am. Chem. Soc. 46, 888 (1924).

    Google Scholar 

  27. D. R. Stull and H. Prophet, eds.,JANAF Thermochemical Tables, Natl. Stand. Ref. Data Ser., U.S. Natl. Bur. Stand., Vol. 37 (1971).

  28. K. K. Kelley,High-Temperature Heat Content, Heat Capacity, and Entropy Data for the Elements and Inorganic Compounds, U.S. Bur. Mines Bull. 584 (1960).

  29. H. C. Helgeson and D. H. Kirkham,Am. J. Sci. 274, 1089 (1974).

    Google Scholar 

  30. S. W. Benson,Thermochemical Kinetics (Wiley, New York, 1968).

    Google Scholar 

  31. W. M. Latimer,Oxidation Potentials, 2nd edn. (Prentice-Hall, New Jersey, 1952).

    Google Scholar 

  32. W. A. Patrick and W. E. Thompson,J. Am. Chem. Soc. 75, 1184 (1953).

    Google Scholar 

  33. H. C. Ko and L. G. Hepler,J. Chem. Eng. Data 8, 59 (1963).

    Google Scholar 

  34. T. Hurlen,Acta Chem. Scand. 14, 1533 (1960).

    Google Scholar 

  35. E. E. Bernarducci, L. R. Morss, and A. R. Miksztal,J. Solution Chem. 8, 717 (1979).

    Google Scholar 

  36. R. E. Mesmer,Inorg. Chem. 10, 857 (1971).

    Google Scholar 

  37. B. O. A. Hedstrom,Ark. Kem. 5, 457 (1953).

    Google Scholar 

  38. D. L. Leussing and I. M. Kolthoff,J. Am. Chem. Soc. 75, 2476 (1953).

    Google Scholar 

  39. B. Shrager,Chem. News 138, 354 (1929).

    Google Scholar 

  40. K. H. Gayer and L. Woontner,J. Phys. Chem. 60, 1569 (1956).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tremaine, P.R., LeBlanc, J.C. The solubility of magnetite and the hydrolysis and oxidation of Fe2+ in water to 300°C. J Solution Chem 9, 415–442 (1980). https://doi.org/10.1007/BF00645517

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00645517

Key words

Navigation