Skip to main content
Log in

Chemical and electrochemical oxidation of copper in dielectric millimeter waveguide tubes

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Chemical and electrochemical techniques are developed for oxidation of copper to constant thicknesses in 51 and 60 mm i.d. tubes up to 11 m in length. Comparison between these oxidation processes show the electrochemical process to be superior for this application. Differential double layer capacitance measurement of copper roughness after the oxidation indicates roughness factors between 3.2 and 9.9 depending on the thickness of the oxide. Potentiodynamic sweeps were used to investigate the mechanism of electrochemical oxidation in sodium hydroxide solutions saturated with copper containing complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. G. Baker and A. T. Spencer,Ind. Eng. Chem. 52 (1960) 1015.

    Google Scholar 

  2. H. V. Varzivani,J. Adhesion 1 (1969) 208.

    Google Scholar 

  3. T. Nakharaet al., Sumitomo Electric, Technical Review 10 (1967) 82.

    Google Scholar 

  4. F. Simchock K. Ramachandran, R. Haynes and F. J. Jannett,J. Electrochem. Soc. 127 (1980) 879.

    Google Scholar 

  5. S. P. Morgan Jr.,J. Appl. Phys. 20 (1949) 352.

    Google Scholar 

  6. J. Allison and F. A. Benson,Electron. Eng. 36 (1957).

  7. Idem, ibid. 548 (1956).

  8. A. E. Karbowiak,Proc. Inst. Electr. Eng. 106 (1959) 168.

    Google Scholar 

  9. J. Allison and F. A. Benson,ibid. 102 (1955) 251.

    Google Scholar 

  10. E. Muller,Elektrochem. 13 (1907) 133.

    Google Scholar 

  11. L. de Brougkereet al., Bull. Soc. Chim. Belg. 60 (1951) 26.

    Google Scholar 

  12. A. Hickling and D. Taylor,Trans. Faraday Soc. 44 (1948) 262.

    Google Scholar 

  13. J. S. Halliday,Trans. Faraday Soc. 50 (1954) 171.

    Google Scholar 

  14. F. Bouillon, J. Piron and J. Stevens,Bull. Soc. Chim. Belg. 67 (1958) 643.

    Google Scholar 

  15. N. P. Fedotev and S. YaGrilikhes,Electroplat. Met. Finish. (1960) 413.

  16. L. Young, ‘Anodic Oxide Films’, Academic Press, New York (1961) pp. 308–9.

    Google Scholar 

  17. A. M. Shams El Din and F. M. Abd. El Wahab,Electrochim. Acta 9 (1964) 113.

    Google Scholar 

  18. T. Hakaharaet al., Sumitomo Electric, Technical Review 10 (1967) 82.

    Google Scholar 

  19. B. Miller,J. Electrochem. Soc. 100 (1969) 256.

    Google Scholar 

  20. N. A. Hampson, J. B. Lee and K. I. MacDonald,Electroanal. Chem. 31 (1971) 57.

    Google Scholar 

  21. Idem, ibid. 32 (1971) 165.

    Google Scholar 

  22. R. J. Brodd and N. Hackerman,J. Electrochem. Soc. 104 (1957) 704.

    Google Scholar 

  23. I. M. Novoselskiiet al., E'lektrokhimiga 7 (1971) 893.

    Google Scholar 

  24. M. Pourbaix, ‘Atlas of Electrochemical Equilibria in Aqueous Solutions’, 2nd edn. NACA, Houston, Texas (1974) p. 387.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fineberg, D.J., Haynes, R., Jannett, F.J. et al. Chemical and electrochemical oxidation of copper in dielectric millimeter waveguide tubes. J Appl Electrochem 13, 177–182 (1983). https://doi.org/10.1007/BF00612479

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00612479

Keywords

Navigation