Skip to main content
Log in

Neck flexion related activity of flight control muscles in the flow-stimulated pigeon

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

Pigeons blown upon from in front were subjected to trapezoidal or stepped laterad neck flexions. The left-right response pattern of wing and tail muscles was regularly correlated with the direction of static neck flexion (Fig. 2). There was no difference whether the head or the body was deflected. In stepped neck flexions, the correlation between muscle activity and stimulus going in the on-direction was often greater than in the off-direction (Fig. 3, M. abd. ind.). Different muscles of the same pigeon frequently showed quite different stimulus-response relationships (Fig. 3 A and B). The muscle responses to steps of neck flexion were tonic (Fig. 2, M. abd. ind.), phasic-tonic (Fig. 2, 1. M. lat. caud.) or only phasic (Fig. 4C), and their time characteristics varied greatly. If not only the pigeon's breast but also its head was blown upon, the left-right activity of muscles depended on the flow direction relative to the head and on the direction of the head's yawing moment (Fig. 5). The left-right activity pattern of muscles was the same in forced and in spontaneous (active) head deflections (Fig. 6A); correlation between head-to-body angle and finger muscle activity was maximal at zero time displacement (±25 ms) between the two pigeon's outputs (Fig. 6B and C). We assume that there exist neck reflexes on wing and tail muscles which are ‘switched on’ when the pigeon is blown upon, and that these reflexes might act as a servo-mechanism which, as proposed by Groebbels (1929), causes the body to follow its beak during flight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EMG:

electromyogram

M. abd. ind. :

M. abductor indicis

M. ext. dig. :

M. extensor digitorum commuais

M.ext. met. :

M. extensor metacarpi radialis

M. lat. caud. :

M. lateralis caudae

References

  • Bendat JS, Piersol AG (1971) Random data: analysis and measurement procedures. Wiley and Sons, New York London Sydney Toronto

    Google Scholar 

  • Biederman-Thorson M, Torson J (1973) Rotation-compensating reflexes independent of the labyrinth and the eye: neuromuscular correlates in the pigeon. J Comp Physiol 83:103–122

    Google Scholar 

  • Bilo D (1974) Muskelaktivierung durch aperiodische horizontale Drehbeschleunigungsreize bei der Haustaube (Columba livia). J Comp Physiol 93:237–263

    Google Scholar 

  • Bilo D (1977) Eingangs-Ausgangsbeziehungen und Modell eines Drehreflexes der HaustaubeColumba livia. Biol Cybern 26:109–124

    Google Scholar 

  • Bilo D, Bilo A (1978a) Wind stimuli control vestibular and optokinetic reflexes in the pigeon. Naturwissenschaften 65:161–162

    Google Scholar 

  • Bilo D, Bilo A (1978b) Einfluß von Windreizen auf vestibuläre und optokinetische Flügel- und Schwanzreflexe der Haustaube (Columba livia). Verh Dtsch Zool Ges 1978:263. Fischer, Stuttgart New York

    Google Scholar 

  • Bilo D, Best G, Schönenberger J, Nachtigall W (1972) Zur Methode der Halothan-Inhalationsnarkose bei Vögeln. J Comp Physiol 79:137–152

    Google Scholar 

  • Bilo D, Bilo A, Theis B, Wedekind F (1983) Activation of flight control muscles by neck reflexes in the domestic pigeon (Columba livia var.domestica). In: Varju D, Schnitzler HU (eds) Orientation and localisation in engineering and biology (Proceedings in life sciences). Springer, Berlin Heidelberg New York, in press

    Google Scholar 

  • Bock WJ (1974) The avian skeletomuscular system. In: Farner DS, King JR, Parkes KC (eds) Avian biology, vol IV. Academic Press, New York London, pp 119–257

    Google Scholar 

  • Delius JD, Vollrath FW (1973) Rotation compensating reflexes independent of the labyrinth: neurosensory correlates in pigeons. J Comp Physiol 83:123–134

    Google Scholar 

  • Gewecke M, Woike M (1978) Breast feathers as an air-current sense organ for the control of flight behaviour in a songbird (Carduelis spinus). Z Tierpsychol 47:293–298

    Google Scholar 

  • Groebbels F (1929) Der Vogel als automatisch sich steuerndes Flugzeug. Naturwissenschaften 17:890–893

    Google Scholar 

  • Kasper J, Thoden U (1981) Effects of natural neck afferent Stimulation on vestibulo-spinal neurons in the decerebrate cat. Exp Brain Res 44:401–408

    Google Scholar 

  • Lackner JR (1977) Induction of nystagmus in stationary subjects with a rotating sound field. Aviat Space Environ Med 48:129–131

    Google Scholar 

  • Magnus R (1924) Körperstellung. Springer, Berlin

    Google Scholar 

  • Manzoni D, Pompeiano O, Stampacchia G (1979) Tonic cervical influences on posture and reflex movements. Arch Ital Biol 117:81–110

    Google Scholar 

  • McCouch GP, Deering ID, Ling TH (1951) Location of receptors for tonic neck reflexes. J Neurophysiol 14:191–195

    Google Scholar 

  • Mergner T, Anastasopoulos D, Becker W (1982) Neuronal responses to horizontal neck deflection in the group × region of the cat's medullary brainstem. Exp Brain Res 45:196–206

    Google Scholar 

  • Mittelstaedt H (1964) Basic control patterns of orientational homeostasis. Symp Soc Exp Biol 18:365–385

    Google Scholar 

  • Mittelstaedt H (1982) Einführung in die Kybernetik des Verhaltens am Beispiel der Orientierung im Raum. In: Hoppe W, Lohmann W, Markl H, Ziegler H (eds) Biophysik. Springer, Berlin Heidelberg New York, 2. Aufl, pp 822–830

    Google Scholar 

  • Oehme H (1976a) Die Flugsteuerung des Vogels. I. Über flugmechanische Grundlagen. Beitr Vogelkd Leipzig 22:58–66

    Google Scholar 

  • Oehme H (1976b) Die Flugsteuerung des Vogels. III. Flugmanöver der Kornweihe (Circus cyaneus). Beitr Vogelkd Leipzig 22:73–82

    Google Scholar 

  • Rabin A (1975) Labyrinthine and vestibulospinal effects on spinal motoneurons in the pigeon. Exp Brain Res 22:431–448

    Google Scholar 

  • Richmond FJR, Abrahams VC (1979) What are the proprioceptors of the neck? In: Granit R, Pompeiano O (eds) Reflex control of posture and movement. Elsevier/North-Holland Biomedical Press, Amsterdam New York Oxford (Progress in brain resarch, vol 50, pp 245–254)

    Google Scholar 

  • Roberts TDM (1978) Neurophysiology of postural mechanisms. Butterworth, London Boston Sydney Wellington Durban Toronto

    Google Scholar 

  • Sy MH (1936) Funktionell-anatomische Untersuchungen am Vogelflügel. J Ornithol 84:199–296

    Google Scholar 

  • Vidal PP, Roucoux A, Berthoz A (1982) Horizontal eye position-related activity in neck muscles of the alert cat. Exp Brain Res 46:448–453

    Google Scholar 

  • Wenzel D, Thoden U (1977) Modulation of hindlimb reflexes by tonic neck positions in cats. Pflügers Arch 370:277–282

    Google Scholar 

  • Wenzel D, Thoden U, Frank A (1978) Forelimb reflexes modulated by tonic neck positions in cats. Pflügers Arch 374:107–113

    Google Scholar 

  • Woike M (1979) Der Flug fixierter Zeisige (Carduelis spinus L.) und seine Steuerung relativ zur Luft. Inaug-Diss. Düsseldorf

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bilo, D., Bilo, A. Neck flexion related activity of flight control muscles in the flow-stimulated pigeon. J. Comp. Physiol. 153, 111–122 (1983). https://doi.org/10.1007/BF00610348

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00610348

Keywords

Navigation