Skip to main content
Log in

Processing of area dimensions of visual key stimuli by tectal neurons inSalamandra salamandra

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

InSalamandra salamandra prey-catching behavior was investigated quantitatively in response to moving visual stimuli with the following Gestalt parameters: squares (S), worm-like (W), and antiworm-like (A) stripes of different sizes. It can be shown that the worm vs. antiworm preference is invariant irrespective of changes of the stimulus angular velocity, which contradicts earlier claims made by Luthardt and Roth (1979).

The activity of 47 tectal neurons in response to the same changing Gestalt parameters was recorded extracellularly and investigated quantitatively. Various classes of monocularly driven neurons can be distinguished according to their different ERF sizes; they correspond to large field class T2 neurons (ERF≃100 °), and T4 neurons (ERF≧ 100 °), and to small field T5 neurons (ERF≃34 °) described earlier in frogs and toads.

If the configurational (W, A) response properties of tectal neurons are considered, further (sub-)-classifications can be made with regard to worm preference (1), antiworm preference (3), and selective responses to large areas (4). Whereas class T5(1), T2(3), and T5(3) neurons have also been recorded from the tectum of toads and frogs, class T4(4) and T5(4) neurons appear to be unique toS. salamandra. In the fire salamander, class T5(1) neurons may fulfill functions of command elements in a system that generates the appropriate motor pattern of the prey-catching sequence. Class T5(4) and T4(4) neurons, on the other hand, are suitable candidates for command elements in another system that generates escape behavior.

No class T5(2) neurons have been identified inS. salamandra. It is suggested that highly selective class T5(2) neurons in anurans have evolved concurrently with the parcellation of the dorsal thalamus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

antiworm-like stripe

ERF :

excitatory receptive field

D W,A :

discriminate value

S :

square

W :

worm-like stripe

Reference

  • Borchers H-W, Ewert J-P (1979) Correlation between behavioral and neuronal activities of toadsBufo bufo (L.) in response to moving configurational prey stimuli. Behav Processes 4:99–106

    Google Scholar 

  • Bullock TH (1983) Implications for neuroethology from comparative neurophysiology. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 53–75

    Google Scholar 

  • Clairambault P (1976) Development of the prosencephalon. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 924–945

    Google Scholar 

  • Ebbesson SOE (1980) The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development, and neural plasticity. Cell Tissue Res 213:179–212

    Google Scholar 

  • Ebbesson SOE (1983) Neuroanatomical implications for neuroethology. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 77–89

    Google Scholar 

  • Ewert J-P (1968) Der Einfluβ von Zwischenhirndefekten auf die Visuomotorik im Beute- und Fluchtverhalten der Erdkröte (Bufo bufo L.). Z Vergl Physiol 61:41–70

    Google Scholar 

  • Ewert J-P (1969) Quantitative Analyse von Reiz-Reaktionsbeziehungen bei visuellem Auslösen der Beutefangwendereaktionen der Erdkröte (Bufo bufo L.). Pflügers Arch 308:225–243

    Google Scholar 

  • Ewert J-P (1980) Neuroethology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ewert J-P (1983/84) Tectal mechanisms underlying prey-catching and avoidance behaviors in toads. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York, (in press)

    Google Scholar 

  • Ewert J-P, Burghagen H (1979a) Ontogenetic aspects on visual ‘size-constancy’ phenomena in the midwife toadAlytes obstetricans (Laur.). Brain Behav Evol 16:99–112

    Google Scholar 

  • Ewert J-P, Burghagen H (1979b) Configurational prey selection byBufo, Alytes, Bombina andHyla. Brain Behav Evol 16:157/175

    Google Scholar 

  • Ewert J-P, Wietersheim A von (1974) Musterauswertung durch tectale und thalamus/praetectale Nervennetze im visuellen System der Kröte (Bufo bufo L.). J Comp Physiol 91:131–148

    Google Scholar 

  • Ewert J-P, Borchers H-W, Wietersheim A von (1978) Question of prey feature detectors in the toad'sBufo bufo (L.) visual system: A correlation analysis. J Comp Physiol 126:43–47

    Google Scholar 

  • Ewert J-P, Burghagen H, Schürg-Pfeiffer E (1983) Neuroethological analysis of the innate releasing mechanism for preycatching behavior in toads. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 413–475

    Google Scholar 

  • Finkenstädt Th (1980) Disinhibition of prey-catching in the salamander following thalamic-pretectal lesions. Naturwissenschaften 67:471

    Google Scholar 

  • Finkenstädt Th (1981) Effects of forebrain lesions on visual discrimination inSalamandra salamandra. Naturwissenschaften 68:268

    Google Scholar 

  • Finkenstädt Th (1983) Influence of the optic tectum and prosencephalic structures on visually controlled prey-catching and avoidance behaviors in the fire salamander. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 585–594

    Google Scholar 

  • Finkenstädt Th, Ewert J-P (1983) Visual pattern discrimination through interactions of neural networks: A combined electrical brain stimulation, brain lesion, and extracellular recording study inSalamandra salamandra. J Comp Physiol 153:99–110

    Google Scholar 

  • Fritzsch B (1980) Retinal projections in European Salamandridae. Cell Tissue Res 213:325–341

    Google Scholar 

  • Grobstein P, Comer Ch, Kostyk SK (1983) Frog prey capture behavior: between sensory maps and directed motor output. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 331–347

    Google Scholar 

  • Grüsser OJ, Grüsser-Cornehls U (1976) Neurophysiology of the anuran visual system. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 297–385

    Google Scholar 

  • Grüsser-Cornehls U, Himstedt W (1976) The urodele visual system. In: Fite KV (ed) The amphibian visual system. Academic Press, New York San Francisco London, pp 203–266

    Google Scholar 

  • Himstedt W (1982) Prey selection in salamanders. In: Ingle DJ, Goodale MA, Mansfield JW (eds). The analysis of visual behavior. The MIT Press, Cambridge, Mass

    Google Scholar 

  • Himstedt W, Fischerleitner E (1975) Die Antworten von Retinaneuronen auf Farbreize bei Urodelen. Zool Jahrb Physiol 79:128–147

    Google Scholar 

  • Himstedt W, Roth G (1980) Neuronal responses in the tectum opticum ofSalamandra to visual prey stimuli. J Comp Physiol 135:251–257

    Google Scholar 

  • Himstedt W, Freidank U, Singer E (1976) Die Veränderung eines Auslösemechanismus im Beutefangverhalten während der Entwicklung vonSalamandra salamandra (L.). Z Tierpsychol 41:235–243

    Google Scholar 

  • Kupfermann I, Weiss KR (1978) The command neuron concept. Behav Brain Sci 1:3–39

    Google Scholar 

  • Luthardt G, Roth G (1979) The relationship between stimulus orientation and stimulus movement pattern in the preycatching behavior ofSalamandra salamandra. Copeia 1979:442–447

    Google Scholar 

  • Roth G (1982) Beuteerkennungsmechanismen im Tectum opticum von Amphibien — eine vergleichende Untersuchung. Funkt Biol Med 1:90–98

    Google Scholar 

  • Sachs L (1976) Statistische Methoden. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Schürg-Pfeiffer E, Ewert J-P (1981) Investigation of neurons involved in the analysis of Gestalt prey features in the frogRana temporaria. J Comp Physiol 141:139–152

    Google Scholar 

  • Weerasuriya A (1983) Snapping in toads: some aspects of sensorimotor interfacing and motor pattern generation. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 613–627

    Google Scholar 

  • Weerasuriya A, Ewert J-P (1981) Prey-selective neurons in the toad's optic tectum and sensori-motor interfacing: HRP studies and recording experiments. J Comp Physiol 144:429–434

    Google Scholar 

  • Witpaard J (1976) Frog's vision. Nat thesis, Leiden

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finkenstädt, T., Ewert, J.P. Processing of area dimensions of visual key stimuli by tectal neurons inSalamandra salamandra . J. Comp. Physiol. 153, 85–98 (1983). https://doi.org/10.1007/BF00610346

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00610346

Keywords

Navigation