Skip to main content
Log in

The transparent compound eye ofHyperia (Crustacea): Examination with a new method for analysis of refractive index gradients

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

The optical system in the compound eye of the amphipodHyperia galba (Crustacea) was examined. The cornea is flat and lacks focusing properties. The crystalline cones are extremely long (up to 600 μm) and not shielded by screening pigment. Thus, the eye is transparent except for the dark retina in the centre.

The refractive index distribution in the crystalline cones was revealed with a new method for computer analysis of interferograms from intact, live crystalline cones. These and ray tracing applied to the optical system revealed that the crystalline cones have the following properties:

  1. 1.

    The distal part contains a graded index lens, corresponding to the corneal lens in insect apposition eyes.

  2. 2.

    In the proximal half of the cone, a second gradient was found with an increasing refractive index towards the proximal tip. This gradient acts by rejecting off-axis rays and rays entering from adjacent cones. Thereby, the proximal gradient replaces interconal screening pigment, which is present in apposition eyes of other arthropods.

  3. 3.

    The distal and proximal index gradients are separated by a portion of almost uniform refractive index.

  4. 4.

    The most proximal part of the cone acts as a short graded index optical fibre for rays within the acceptance angle.

Because the gradient system does not seem to confer any optical advantage compared with the presence of shielding pigments, it is interpreted as an adaptation to achieve a transparent, and thus less visible eye in a basically pelagic animal.

The optical information capacity was evaluated for different regions of the eye, and the dorsal part had interommatidial angles under 1 degree.

During the preparation of the final typescript of the present paper, a description of the optics in a similar eye of another hyperiid amphipod appeared in this journal (Land 1981). The results of these two independent investigations are partially similar, but the methods and the interpretation of the results are different, and therefore, a comparison of the two investigations is given in the Discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ball EE (1977) Fine structure of the compound eyes of the midwater amphipodPhronima in relation to behavior and habitat. Tissue Cell 9:521–536

    Google Scholar 

  • Bryceson KP (1981) Focusing by corneal lenses in a reflecting superposition eye. J Exp Biol 90:347–350

    Google Scholar 

  • Caveney S, McIntyre P (1981) Design of graded-index lenses in the superposition eyes of scarab beetles. Philos Trans R Soc Lond [Biol] 294:589–632

    Google Scholar 

  • Dahl E (1959a) The amphipod,Hyperia galba, an ectoparasite of the jelly-fish,Cyanea capillata. Nature 183:1749

    Google Scholar 

  • Dahl E (1959b) The hyperiid amphipod,Hyperia galba, a true ectoparasite on jelly-fish. Univ Bergen Årbok Naturvitensk Rekke 9:1–8

    Google Scholar 

  • Dahl E (1961) The association between young whiting,Gadus merlangus, and the jelly-fishCyanea capillata. Sarsia 3:47–55

    Google Scholar 

  • Debaisieux P (1944) Les yeux des crustacés. Cellule 50:9–122

    Google Scholar 

  • Eheim WP, Wehner R (1972) Die Sehfelder der zentralen Ommatidien in den Appositionsaugen vonApis mellifica undCataglyphis bicolor (Apidae, Formicidae; Hymenoptera). Kybernetik 10:168–179

    Google Scholar 

  • Fölster K, Herrmann R (1974) Zur Messung des radialen Brechungsindexverlaufs von zylindersymmetrischen Gradientenfasern. Optica Acta 21:25–33

    Google Scholar 

  • Hallberg E, Nilsson HL, Elofsson R (1980) Classification of amphipod compound eyes — the fine structure of the ommatidial units (Crustacea, Amphipoda). Zoomorphologie 94:279–306

    Google Scholar 

  • Hausen K (1973) Die Brechungsindices im Kristallkegel der MehlmotteEphestia kühniella. J Comp Physiol 82:365–378

    Google Scholar 

  • Horridge GA (1975) Arthropod receptor optics. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 459–478

    Google Scholar 

  • Horridge GA (1978) The separation of visual axes in apposition compound eyes. Philos Trans R Roc Lond [Biol] 285:1–59

    Google Scholar 

  • Horridge GA (1980) Apposition eyes of large diurnal insects as organs adapted to seeing. Proc R Soc Lond [Biol] 207:287–309

    Google Scholar 

  • Horridge GA, Giddings C, Stange G (1972) The superposition eye of skipper butterflies. Proc R Soc Lond [Biol] 182:457–495

    Google Scholar 

  • Horridge GA, McLean M, Stange G, Lillywhite PG (1977) A diurnal moth superposition eye with high resolutionPhalaenoides tristifica (Agaristidae). Proc R Soc Lond [Biol] 196:233–250

    Google Scholar 

  • Horridge GA, Duniec J, Marĉelja L (1981) A 24-hour cycle in single locust and mantis photoreceptors. J Exp Biol 91:307–322

    Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:137A-138A

    Google Scholar 

  • Kunze P (1979) Apposition and superposition eyes. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6A. Springer, Berlin Heidelberg New York, pp 441–502

    Google Scholar 

  • Kunze P, Hausen K (1971) Inhomogeneous refractive index in the crystalline cone of a moth eye. Nature 231:392–393

    Google Scholar 

  • Land MF (1979) The optical mechanism of the eye ofLimulus. Nature 280:396–397

    Google Scholar 

  • Land MF (1980a) Compound eyes: old and new optical mechanisms. Nature 287:681–686

    Google Scholar 

  • Land MF (1980b) Optics and vision in invertebrates. In: Autrum H (ed) Handbook of sensory physiology, vol VII/B. Springer, Berlin Heidelberg New York, pp 471–592

    Google Scholar 

  • Land MF (1981) Optics of the eyes ofPhronima and other deep-sea amphipods. J Comp Physiol 145:209–226

    Google Scholar 

  • Land MF, Burton FA (1979) The refractive index gradient in the crystalline cones of the eyes of a Euphausiid crustacean. J Exp Biol 82:395–398

    Google Scholar 

  • Leggett LMW, Stavenga DG (1981) Diurnal changes in angular sensitivity of crab photoreceptors. J Comp Physiol 144:99–109

    Google Scholar 

  • Meggitt S, Meyer-Rochow VB (1975) Two calculations on optically non-homogeneous lenses. In: Horridge GA (ed) The compound eye and vision of insects. Clarendon Press, Oxford, pp 314–320

    Google Scholar 

  • Meyer-Rochow VB (1974) Fine structural changes in dark-light adaptation in relation to unit studies of an insect compound eye with a crustacean-like rhabdom. J Insect Physiol 20:573–589

    Google Scholar 

  • Meyer-Rochow VB (1978) The eyes of mesopelagic crustaceans II.Streetsia challengeri (Amphipoda). Cell Tissue Res 186:337–349

    Google Scholar 

  • Michel A, Anders F (1954) Über die Pigmente im Auge vonGammarus pulex L. Naturwissenschaften 41:72

    Google Scholar 

  • Nilsson D-E, Nilsson HL (1981) A crustacean compound eye adapted for low light intensities (Isopoda). J Comp Physiol 143:503–510

    Google Scholar 

  • Nilsson D-E, Odselius R (1981) A new mechanism for light-dark adaptation in theArtemia compound eye (Anostraca, Crustacea). J Comp Physiol 143:389–399

    Google Scholar 

  • Rossel S (1979) Regional differences in photoreceptor performance in the eye of the praying mantis. J Comp Physiol 131:95–112

    Google Scholar 

  • Saunders MJ, Gardner WB (1977) Nondestructive interferometric measurement of the delta and alpha of clad optical fibers, Appl Opt 16:2368–2371

    Google Scholar 

  • Seitz G (1969) Untersuchungen am dioptrischen Apparat des Leuchtkäferauges. Z Vergl Physiol 62:61–74

    Google Scholar 

  • Snyder AW (1975) Photoreceptor optics — theoretical principles. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 38–54

    Google Scholar 

  • Snyder AW (1977) Acuity of compound eyes: Physical limitations and design. J Comp Physiol 116:161–182

    Google Scholar 

  • Snyder AW, Stavenga DG, Laughlin SB (1977) Spatial information capacity of compound eyes. J Comp Physiol 116:183–207

    Google Scholar 

  • Stone J, Burrus CA (1975) Focusing effects in interferometric analysis of graded-index optical fibers. Appl Opt 14:151–155

    Google Scholar 

  • Strauss E (1926) Das Gammaridenauge. Wiss Ergebn Dt Tiefsee Exped Valdivia 20:1–84

    Google Scholar 

  • Varela FG, Wiitanen W (1970) The optics of the compound eye of the honeybee (Apis mellifera). J Gen Physiol 55:336–358

    Google Scholar 

  • Vogt K (1974) Optische Untersuchungen an der Cornea der MehlmotteEphestia kühniella. J Comp Physiol 88:201–216

    Google Scholar 

  • Vogt K (1980) Die Spiegeloptik des Flußkrebsauges. J Comp Physiol 135:1–19

    Google Scholar 

  • Walcott B (1974) Unit studies on light-adaptation in the retina of the crayfish,Cherax destructor. J Comp Physiol 94:207–218

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nilsson, D.E. The transparent compound eye ofHyperia (Crustacea): Examination with a new method for analysis of refractive index gradients. J. Comp. Physiol. 147, 339–349 (1982). https://doi.org/10.1007/BF00609668

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00609668

Keywords

Navigation