Skip to main content
Log in

Autoregulation of contractility in the myocardial cell

Displacement as a controlling parameter

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

An investigation was carried out on isolated cat's papillary muscle in order to study displacement effects upon the intensity and the time course of the contractile activity. Displacements occurring before or very early during a contractile cycle produce effects which can be entirely explained on the basis of the cardiac active length-tension relation. Displacements occurring later exhibit additional effects in so far as either stretches or releases induce a drop of contractile activation such that the course of the subsequent tension development is markedly below that of the same displacement applied earlier. In order to separate these effects from those based on the active length-tension correlation experiments were performed in which very short release-stretch or stretch-release operations were applied so that the muscle length was virtually the same at the beginning and at the end of the operation. The results obtained under these conditions can be summarized as follows.

The extend to which contractile tension drops after a stretch-release or a release-stretch cycle has been applied depends upon (1) the stimulus intervention interval (2) the length change performed (3) the velocity of displacement during the intervention. It is not dependent on the initial muscle length. Increasing the extracellular Ca-concentration considerably reduces the displacement effects. The results are tentatively explained by assuming an internal feedback loop between a variable of the contractile machinary and the preceding mechanism of activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, B. C., Mommaerts, W. F. H. M.: A study of inotropic mechanisms in the papillary muscle preparation. J. gen. Physiol.42, 533 (1959).

    Google Scholar 

  • Antoni, H., Jakob, R., Kaufmann, R.: Mechanische Reaktionen des Frosch- und Säugetiermyokards bei Veränderung der Aktionspotential-Dauer durch konstante Gleichstromimpulse. Pflügers Arch. ges. Physiol.300, 33 (1969).

    Google Scholar 

  • Baker, P. F., Meves, H., Ridgway, E. B.: Phasic entry of calcium in response to depolarisation of giant axons of Loligo fortesi. J. Physiol. (Lond.)215, 22P (1971).

    Google Scholar 

  • Beeler, G. W., Reuter, H.: Membrane calcium current in ventricular myocardial fibres. J. Physiol. (Lond.)207, 191 (1970).

    Google Scholar 

  • Brady, A. J.: Time and displacement dependence of cardiac contractility: problems in defining the active state and force velocity relations. Fed. Proc.24, 1410 (1965).

    Google Scholar 

  • —: Onset of contractility in cardiac muscle. J. Physiol. (Lond.)184, 560 (1966).

    Google Scholar 

  • Brutsaert, D. L., Sonnenblick, E. H.: Force-velocity-length-time relations of the contractile elements in heart muscle of the cat. Circulat. Res.24 137 (1969).

    Google Scholar 

  • Davies, R. E.: A molecular theory of muscle contraction: calcium-dependent contractions with hydrogen bond formation plus ATP-dependent extensions of part of the myosin-actin bridges. Nature (Lond.)199, 1078 (1963).

    Google Scholar 

  • Ebashi, S., Endo, M.: Calcium ion and muscle contraction. Progr. biophys. molec. Biol.18, 123 (1968).

    Google Scholar 

  • Edman, K. A. P.: The active state and the force-velocity relation in the cardiac muscle. In: Herzinsuffizienz, Pathophysiologie und Klinik, S. 133. Hrsg.: H. Reindell, J. Keul u. E. Doll: Stuttgart: G. Thieme 1968.

    Google Scholar 

  • — Nilsson, E.: The dynamics of the inotropic change produced by altered pacing of rabbit papillary muscle. Acta physiol. scand.76, 230 (1969).

    Google Scholar 

  • Fenn, W. O.: A quantitative comparison between the energy liberated and the work performed by the isolated sartorius of the frog. J. Physiol. (Lond.)58, 175 (1923).

    Google Scholar 

  • Goodall, M. C.: Kinetics of muscular contraction. Yale J. Biol. Med.39, 224 (1957).

    Google Scholar 

  • Hill, A. V.: The heat of shortening and the dynamic constants of muscle. Proc. roy. Soc. B126, 136 (1938).

    Google Scholar 

  • — The abrupt transition from rest to activity in muscle. Proc. roy. Soc. B130, 399 (1949).

    Google Scholar 

  • — The effect of tension in prolonging the active state in a twitch. Proc. roy. Soc. B159, 589 (1964).

    Google Scholar 

  • Huxley, A. F.: Muscle structure and theories of contraction. Progr. Biophys.7, 255 (1957).

    Google Scholar 

  • Jewell, B. R., Wilkie, D. R.: The mechanical properties of relaxing muscle. J. Physiol. (Lond.)152, 30 (1960).

    Google Scholar 

  • Julian, F. J.: Activation in a skeletal muscle contraction model with modification for insect fibrillar muscle. Biophys. J.9, 547 (1969).

    Google Scholar 

  • Kaufmann, R., Lab, M. J., Hennekes, R., Krause, H.: Feedback interaction of mechanical and electrical events in the isolated mammalian ventricular myocardium. Pflügers Arch.324, 100 (1971).

    Google Scholar 

  • Kohlhardt, M., Bauer, B., Krause, H., Fleckenstein, A.: New selective inhibitors of the transmembrane Ca conductivity in mammalian myocardial fibres. Studies with the voltage clamp technique Experientia (in press) (1972).

  • Langer, G. A.: Ion fluxes in cardiac excitation and contraction and their relation to myocardial contractility. Physiol. Rev.48, 708 (1968).

    Google Scholar 

  • Mommaerts, W. F. H. M.: Energetics of muscular contraction. Physiol. Rev.49, 427 (1969).

    Google Scholar 

  • — What is the Fenn-Effect? Naturwissenschaften57, 326 (1970).

    Google Scholar 

  • Ochi, R., Trautwein, W.: The dependence of cardiac contraction on depolarisation and slow inward current. Pflügers Arch.323, 187 (1971).

    Google Scholar 

  • Podolsky, R. J., Nolan, A. C., Zaveler, S. A.: Cross-bridge properties derived from muscle isotonic velocity transients. Proc. nat. Acad. Sci. (Wash.)64, 504 (1969).

    Google Scholar 

  • Pringle, J. W. S.: The contractile mechanism of insect fibrillar muscle. Progr. biophys. molec. Biol.17, 3 (1967).

    Google Scholar 

  • Sonnenblick, E. H.: Instantaneous force-velocity-length determinants in the contraction of heart muscle. Circulat. Res.16, 441 (1965).

    Google Scholar 

  • Wood, E. H., Heppner, R. L., Weidmann, S.: Inotropic effects of electric currents. Circulat. Res.24, 410 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This investigation was supported by the Deutsche Forschungsgemeinschaft (grant Ka 287, 1+3).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaufmann, R.L., Bayer, R.M. & Harnasch, C. Autoregulation of contractility in the myocardial cell. Pflugers Arch. 332, 96–116 (1972). https://doi.org/10.1007/BF00589087

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00589087

Key words

Navigation