Skip to main content
Log in

The isolated frog skin epithelium: Presence of α and β adrenergic receptors regulating active sodium transport and water permeability

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

The effects of stimulation of α and β adrenergic receptors on short circuit current (S.C.C.), Na+ and Cl fluxes and osmotic water permeability were studied on isolated frog skin epithelial layers separated from the dermis.

Low norepinephrine doses (final concentrations in the incubation medium ranging from 5×10−9 to 10−8 M) produced increased water permeability and S.C.C. The latter was entirely accounted for by an increase in the active Na+ influx. Na+ outflux and Cl fluxes were not modified. Both these effects disappeared after treatment with the β blocking agent, Propranolol. Higher norepinephrine doses (final concentrations: 10−7 to 10−6 M) produced: 1. an increase in water permeability lower than that produced by low doses, the highest doses failing to increase water permeability, and 2. a triphasic change in S.C.C.: after an initial increase, S.C.C. dropped to its resting value and then rose again to a sustained value. Na+ and Cl flux measurements showed that the variation in S.C.C. reflected variations in active Na+ transport. When the same high norepinephrine doses were applied after treatment with the α blocking agent Phentolamine, the effects observed were identical to those obtained with low doses.

On β blocked preparations, large doses of norepinephrine inhibited the water permeability and sodium transport increases induced by theophylline or oxytocin but did not modify those induced by 3′5′-cyclic AMP. The inhibition was suppressed after blocking α receptors.

From the foregoing, it was concluded that both α and β adrenergic receptors are present in frog skin epithelial cells and are involved in the regulation of water and sodium permeability.

It is suggested that the inhibitory effect of α stimulation resulted from the inhibition of cyclic-AMP generating system, the activity of which is under the positive control effect of oxytocin and β stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe, K., Robison, G. A., Liddle, G. W., Butcher, R. W., Nicholson, W. E., Baird, C. E.: Role of cyclic AMP in mediating the effects of MSH, norepinephrine, and melatonin on frog skin color. Endocrinology85, 674 (1969).

    Google Scholar 

  2. Ahlquist, R. P.: A study of adrenotropic receptors. Amer. J. Physiol.153, 586–599 (1948).

    Google Scholar 

  3. Baba, W., Smith, A., Townsend, M.: The effect of vasopressin, theophylline and 3′5′-adenosine monophosphate (cyclic AMP) on sodium transport across the frog skin. Quart. J. exp. Physiol.52, 416–420 (1967).

    Google Scholar 

  4. Bastide, F., Jard, S.: Action de la noradrenaline et de l'ocytocine sur le transport actif de sodium et la perméabilité à l'eau de la peau de la grenouille: rôle de l'adénosine 3′5′-monophosphate cyclique. Biochim. biophys. Acta (Amst.)150, 113–123 (1968).

    Google Scholar 

  5. Bentley, P. J.: The effects of neurohypophyseal extracts on water transfer across the wall of isolated urinary bladder of the toadBufo marinus. J. Endocr.17, 201–209 (1958).

    Google Scholar 

  6. —: The effects of vasopressin on short circuit current across isolated urinary bladder of the toadBufo marinus. J. Endocr.21, 161–170 (1960).

    Google Scholar 

  7. Bourguet, J., Morel, F.: Indépendance des variations de perméabilité à l'eau et au sodium produites par les hormones neurohypophysaires sur la vessie de grenouille. Biochim. biophys. Acta (Amst.)135, 693–700 (1967).

    Google Scholar 

  8. Burns, T. W., Langley, P. E., Robinson, G. A.: Lipolytic activity of human adipose tissue: effects of α and β adrenergic blocking agents on 3′5′-cyclic adenosine monophosphate (C-AMP) and glycerol release. Clin. Res.18, 86 (1970).

    Google Scholar 

  9. Carasso, N., Favard, P., Jard, S., Rajerison, R. M.: The isolated frog skin epithelium: I. Preparation and general structure in different physiological states. J. Microscop.10, 315–330 (1971).

    Google Scholar 

  10. Eggena, P., Schwartz, T. L., Walter, R.: Threshold and receptor reserve in the action of neurohypophyseal peptides. A study of synergists and antagonists of hydrosmotic response of the toad urinary bladder. J. gen. Physiol.56, 250 to 271 (1970).

    Google Scholar 

  11. Fuhrman, F. A., Ussing, H. H.: A characteristic response of the isolated frog skin potential to neurohypophyseal principles and its relation to the transport of sodium and water. J. cell. comp. Physiol.38, 109–130 (1951).

    Google Scholar 

  12. Gonzalez, S. C., Sanchez, J. O., Concha, J. B.: Further evidence for the release of noradrenaline under nerve stimulation and its effect on potential difference in a toad nerve skin preparation. Biochim. biophys. Acta (Amst.)135, 167–170 (1967).

    Google Scholar 

  13. Handler, J. S., Bensinger, R., Orloff, J.: Effect of adrenergic agents on toad bladder response to ADH, 3′5′-AMP and theophylline. Amer. J. Physiol.215, 1024–1031 (1968).

    Google Scholar 

  14. Koefoed-Johnsen, V., Ussing, H. H., Zerahn, K.: The origin of the short circuit current in the adrenalin stimulated frog skin. Acta physiol. scand.27, 38–48 (1953).

    Google Scholar 

  15. Marquis, N. R., Becker, J. A., Vigdahl, R. L.: Platelet aggregation: III. An epinephrine induced decrease in cyclic AMP synthesis. Biochem. biophys. Res. Commun39, 783–789 (1970).

    Google Scholar 

  16. Orloff, J., Handler, J. S.: Vasopressin like effects of adenosine 3′,5′-phosphate (cyclic 3′5′-AMP) and theophylline in the toad bladder. Biochem. biophys. Res. Commun.5, 63–66 (1961).

    Google Scholar 

  17. ——: The role of adenosine 3′5′-phosphate in the action of antidiuretic hormone. Amer. J. Med.42, 757–768 (1967).

    Google Scholar 

  18. Petersen, M. J., Edelman, I. S.: Calcium inhibition of the action of vasopressin on the urinary bladder of the toad. J. clin. Invest.43, 583–594 (1964).

    Google Scholar 

  19. Porte, D., Jr.: A receptor mechanism for the inhibition of insulin release by epinephrine in man. J. clin. Invest.46, 86–94 (1967).

    Google Scholar 

  20. Porte, E.: Stimulation of insulin release by a β adrenergic receptor. Diabetes15, 543 (1966).

    Google Scholar 

  21. Rajerison, R. M., Montegut, M., Jard, S., Morel, F.: The isolated frog skin epithelium: permeability characteristics and responsiveness to oxytocin, cyclic AMP and theophylline. Pflügers Arch.332, 302–312 (1972).

    Google Scholar 

  22. Robison, G. A., Arnold, A., Hartmann, R. C.: Divergent effects of epinephrine and prostaglandin E, on the level of cyclic AMP in human blood platelets. Pharmacol. Res. Commun.1, 325 (1969).

    Google Scholar 

  23. —, Sutherland, E. W.: Sympathin E, sympathin I, and the intracellular level of cyclic AMP, supplement I. Circulat. Res.26, 147–162 (1970).

    Google Scholar 

  24. Salee, M., Vildrequin Deliege, M.: Nervous control of the permeability characteristics of the isolated skin of the toadBufo bufo L. Comp. Biochem. Physiol.23, 583–597 (1967).

    Google Scholar 

  25. Triner, L., Vulliemoz, Y., Verosky, M., Nahas, G. G.: The effect of catecholamines on adenyl cyclase activity in rat uterus. Life Sci.9, 707–712 (1970).

    Google Scholar 

  26. Turner, J. R., Kipnis, D. M.: An adrenergic receptor mechanism for the control of cyclic 3′5′-adenosine monophosphate synthesis in tissues. Biochem. Biophys. Res. Commun.28, 797–802 (1967).

    Google Scholar 

  27. Ussing, H. H., Zerahn, K.: Active transport of sodium as the source of electric current in the short circuited isolated frog skin. Acta physiol. scand.23, 110–127 (1951).

    Google Scholar 

  28. Van de Verdonk, F. C. G., Konijn, T. M.: The role of adenosin 3′5′-cyclic monophosphate and catecholamines in the pigment integration process inXenopus Laevis. Acta endocr. (Kbh.)64, 364–376 (1970).

    Google Scholar 

  29. Watlington, O. C.: Effect of catecholamines and adrenergic blockade on sodium transport of isolated frog skin. Amer. J. Physiol.5, 1001–1007 (1968).

    Google Scholar 

  30. —: Adrenergic inhibition of Na+ transport: the interaction of vasopressin and 3′5′-AMP. Biochim. biophys. Acta (Amst.)193, 394–402 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajerison, R.M., Montegut, M., Jard, S. et al. The isolated frog skin epithelium: Presence of α and β adrenergic receptors regulating active sodium transport and water permeability. Pflugers Arch. 332, 313–331 (1972). https://doi.org/10.1007/BF00588578

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00588578

Key words

Navigation