Skip to main content
Log in

Evidence for myosin-linked regulation in guinea pig taenia coli muscle

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

The ATPase activity of actomyosin prepared from taenia coli muscle of guinea pig was found to increase upon adding rabbit skeletal heavy meromyosin (HMM) in the absence of Ca2+. SDS-gel electrophoresis of muscle homogenates did not reveal the presence of troponin. Ca2+-regulation in taenia coli muscle thus appears to be myosin-linked.

The glycerinated muscles which did not develop any tension in the presence of EGTA contracted after irrigation with rabbit skeletal myosin.

Skeletal HMM could also cause tension generation in strips of glycerinated taenia coli in the presence of EGTA. The tension developed by the muscles in the presence of Ca2+ was increased if HMM was added. The HMM-induced tension was associated with a marked increase in ATPase activity both in the presence and in the absence of Ca2+. No HMM-associated tension could be detected when inactivated HMM was employed or when MgATP was substituted with Mg-pyrophosphate or Mg-AMP-PNP.

The mechanical effect of HMM probably results from a mechanochemical interaction between the added HMM and muscle actin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azuma, N., Watanabe, S.: The major component of metin from rabbit skeletal and bovine cardiac muscle. J. biol. Chem.240, 2847–3851 (1965)

    Google Scholar 

  • Bárány, M., Conover, T. E., Schlieselfeld, L. H., Gaetjens, E., Gaffart, M.: Relation of properties of isolated myosin to those of intact muscles of the sloth. Europ. J. Biochem.2, 156–164 (1967)

    Google Scholar 

  • Bohr, D. F., Filo, R. S., Guthe, K. F.: Contractile proteins in vascular smooth muscle. Physiol. Rev., Suppl.5, 98–112 (1962)

    Google Scholar 

  • Bremel, R. D.: Myosin linked calcium regulation in vertebrate smooth muscle. Nature (Lond.)252, 405–406 (1974)

    Google Scholar 

  • Ebashi, S., Endo, M.: Calcium ions and muscle contraction. Progr. Biophys. molec. Biol.18, 123–183 (1968)

    Google Scholar 

  • Filo, R. S., Bohr, D. F., Rüegg, J. C.: Glycerinated skeletal and smooth muscle: calcium and magnesium dependence. Science147, 1581–1583 (1965)

    Google Scholar 

  • Gadasi, H., Oplatka, A., Lamed, R., Muhlrad, A.: A comparative study of muscle contraction and superprecipitation using trinitrophenylated myosin subfragments. Biochem. biophys. Res. Commun.58, 913–918 (1974)

    Google Scholar 

  • Gordon, A. R., Siegman, M. J.: Mechanical properties of smooth muscle. I. Length-tension and force-velocity relation. Amer. J. Physiol.221, 1243–1249 (1971)

    Google Scholar 

  • Ishikawa, H., Bischoff, R., Holtzer, H. C.: Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J. Cell Biol.43, 312–328 (1969)

    Google Scholar 

  • Lamed, R., Oplatka, A.: Applications of immobilized ATP in the study of myosin. Biochemistry13, 3137–3142 (1974)

    Google Scholar 

  • Lehman, W., Szent-Györgyi, A. G.: Regulation of muscular contraction. Distribution of actin control and myosin control in the animal kingdom. J. gen. Physiol.66, 1–30 (1975)

    Google Scholar 

  • Lowey, S., Cohen, C.: Studies on the structure of myosin. J. molec. Biol.4, 293–308 (1962)

    Google Scholar 

  • Lowey, S., Slayter, H. S., Weeds, A. G., Baker, H.: Substructure of the myosin molecule. I. Subfragments of myosin by enzymic degradation. J. molec. Biol.42, 1–29 (1969)

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem.193, 265–275 (1951)

    Google Scholar 

  • Mrwa, U., Rüegg, J. C.: Myosin-linked calcium regulation in vascular smooth muscle. FEBS Letters60, 81–84 (1975)

    Google Scholar 

  • Oplatka, A.: Some elementary aspects of mechanochemical coupling in actomyosinoid systems and their possible relevance to the platelet contractile system. Haemostasis4, 131–142 (1975)

    Google Scholar 

  • Oplatka, A., Borejdo, J., Gadasi, H. P.: Tension development in stretched glycerinated muscle fibers and contractions of “ghost” myofibrils induced by irrigation with heavy meromyosin. FEBS Letters45, 55–58 (1974b)

    Google Scholar 

  • Oplatka, A., Borejdo, J., Gadasi, H., Tirosh, R., Liron, N., Reisler, E.: Contraction of glycerinated muscle fibers, myofibrils and actin threads induced by water soluble myosin fragments. In: Proteins of contractile systems, Proc. FEBS Meetings, Vol. 31 (FEBS Meeting, Budapest, August 1974), pp. 41–46 Budapest: Akademiai Kiado 1975a

    Google Scholar 

  • Oplatka, A., Gadasi, H., Borejdo, J.: The contraction of “ghost” myofibrils and glycerinated muscle fibers irrigated with heavy meromyosin subfragment-1. Biochem. biophys. Res. Commun.58, 905–912 (1974c)

    Google Scholar 

  • Oplatka, A., Gadasi, H., Tirosh, R., Lamed Y., Muhlrad, A., Liron, N.: Demonstration of mechanochemical coupling in systems containing actin, ATP, and non-aggregating active myosin derivatives. J. Mechanochem. Cell Motil.2, 295–306 (1974a)

    Google Scholar 

  • Pollard, T. D., Weihing, R. R.: Actin and myosin and cell movement. Biochemistry2, 1–65 (1974)

    Google Scholar 

  • Schädler, M.: Proportionale Aktivierung von ATPase-Aktivität und Kontraktionsspannung durch Calciumionen in isolierten contractilen Strukturen verschiedener Muskelarten. Pflügers Arch. ges. Physiol.296, 70–90 (1967)

    Google Scholar 

  • Sobieszek, A., Bremel, R. D.: Preparation and properties of vertebrate smooth muscle myofibrils and actomyosin. Eur. J. Biochem.55, 49–60 (1975)

    Google Scholar 

  • Sobieszek, A., Small, J. V.: Myosin-linked calcium regulation in vertebrate smooth muscle. J. molec. Biol.102, 75–92 (1976)

    Google Scholar 

  • Stracher, A., Chan, P. C.: Studies on the adenosinetriphosphate active center of myosin. In: Biochemistry of muscle contraction (J. Gergely, ed.), pp. 106–113. London: Churchill 1964

    Google Scholar 

  • Weber, K., Osborn, M.: The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J. biol. Chem.244, 4406–4412 (1969)

    Google Scholar 

  • Weis-Fogh, T., Amos, W. B.: Evidence for new mechanism of cell motility. Nature (Lond.)236, 301–304 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by a Katzir-Katchalsky fellowship (to J. B.) and by a grant from the Muscular Dystrophy Association of America (to A. O.)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borejdo, J., Oplatka, A. Evidence for myosin-linked regulation in guinea pig taenia coli muscle. Pflugers Arch. 366, 177–184 (1976). https://doi.org/10.1007/BF00585875

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00585875

Key words

Navigation