Skip to main content
Log in

The effective surface energy of brittle materials

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effective surface energy of four brittle materials, alumina, poly(methylmethacrylate), glass, and graphite, is calculated from load/deflection curves of notched bars deformed in three-point bending. Two of the methods, which are commonly used in fracture mechanics studies,viz the modified Griffith treatment and the compliance analysis method, are concerned with the effective surface energy at the initiation of fracture,γ I . The third method, the work of fracture test, is concerned with the mean effective surface energy over the whole fracture process,γ F . The two estimates ofγ I give consistent values, and there is no systematic variation ofγ I with notch depth. Values ofγ F decrease with increasing notch depth as the fracture process becomes more controlled. For aluminaγ I γ F . For PMMA and glassγ I > γγ F because of a multiplicity of crack sources during fracture initiation. For graphiteγ I <γ F because of subsidiary cracking as fracture proceeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. G. Tattersall andG. Tappin,J. Matls. Sci. 1 (1966) 296.

    Google Scholar 

  2. J. Nakayama,J. Amer. Ceram. Soc. 48 (1965) 583.

    Google Scholar 

  3. G. R. Irwin,Trans. ASM 40A (1948) 147.

    Google Scholar 

  4. E. Orowan,Welding J. 34 (1955) 157.

    Google Scholar 

  5. D. H. Winne andB. M. Wundt,Trans. ASME 80 (1958) 1643.

    Google Scholar 

  6. B. Gross andJ. E. Srawley, NASA Report TN-2603, 1965.

  7. J. E. Srawley andW. F. Brown, “Fracture Toughness Testing and its Application” (ASTM, 1964) and NASA TM X-52030 (1964).

  8. J. M. Corum, USAEC Report ORNL-4030(1966).

  9. F. J. P. Clarke,Acta Met. 12 (1964) 139.

    Google Scholar 

  10. R. W. Davidge andG. Tappin,J. Matls. Sci. 3 (1968) to be published.

  11. J. J. Benbow andF. C. Roesler,Proc. Phys. Soc. B70 (1957) 201.

    Google Scholar 

  12. J. P. Berry,J. Appl. Phys. 34 (1963) 62.

    Google Scholar 

  13. A. Van Den Boogaart, “Physical Basis of Yield and Fracture” (Phys. Soc., London, 1966) p. 167.

    Google Scholar 

  14. E. B. Shand,J. Amer. Ceram. Soc. 44 (1961) 21.

    Google Scholar 

  15. F. F. Lange andK. A. D. Lambe,Phil. Mag. in press.

  16. S. M. Wiederhorn,J. Amer. Ceram. Soc. 50 (1967) 407.

    Google Scholar 

  17. R. H. Knibbs,J. Nucl. Matls. 24 (1967) 174.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davidge, R.W., Tappin, G. The effective surface energy of brittle materials. J Mater Sci 3, 165–173 (1968). https://doi.org/10.1007/BF00585484

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00585484

Keywords

Navigation