Skip to main content
Log in

Peroxisome biogenesis inSaccharomyces cerevisiae

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The observation that peroxisomes ofSaccharomyces cerevisiae can be induced by oleic acid has opened the possibility to investigate the biogenesis of these organelles in a biochemically and genetically well characterized organism. Only few enzymes have been identified as peroxisomal proteins inSaccharomyces cerevisiae so far; the three enzymes involved in β-oxidation of fatty acids, enzymes of the glyoxylate cycle, catalase A and the PAS3 gene product have been unequivocally assigned to the peroxisomal compartment. However, more proteins are expected to be constituents of the peroxisomes inSaccharomyces cerevisiae.

Mutagenesis ofSaccharomyces cerevisiae cells gave rise to mutants unable to use oleic acid as sole carbon source. These mutants could be divided in two groups: those with defects in structural genes of β-oxidation enzymes (fox-mutants) and those with defects in peroxisomal assembly (pas-mutants). All fox-mutants possess morphologically normal peroxisomes and can be assigned to one of three complementation groups (FOX1, 2, 3). All three FOX genes have been cloned and characterized. The pas-mutants isolated are distributed among 13 complementation groups and represent 3 different classes: peroxisomes are either morphologically not detectable (type I) or present but non-proliferating (type II). Mislocalization concerns all peroxisomal proteins in cells of these two classes. The third class of mutants contains peroxisomes normal in size and number, however, distinct peroxisomal matrix proteins are mislocalized (type III). Five additional complementation groups were found in the laboratory of H.F. Tabak. Not all PAS genes have been cloned and characterized so far, and only for few of them the function could be deduced from sequence comparisons.

Proliferation of microbodies is repressed by glucose, derepressed by non-fermentable carbon sources and fully induced by oleic acid. The regulation of four genes encoding peroxisomal proteins (PAS1, CTA1, FOX2, FOX3) occurs on the transcriptional level and reflects the morphological observations: repression by glucose and induction by oleic acid. Moreover, trans-acting factors like ADR1, SNF1 and SNF4, all involved in derepression of various cellular processes, have been demonstrated to affect transcriptional regulation of genes encoding peroxisomal proteins.

The peroxisomal import machinery seems to be conserved between different organisms as indicated by import of heterologous proteins into microbodies of different host cells. In addition, many peroxisomal proteins contain C-terminal targeting signals. However, more than one import route into peroxisomes does exist. Dissection of the import mechanism in a genetically well suited organism likeSaccharomyces cerevisiae together with further characterization and functional assignment of the PAS gene products will provide insight into the biogenesis of peroxisomes. Moreover, these studies will lead to a good model system for elucidation of the mechanisms underlying human peroxisomal disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexson SEH, Fujiki Y, Shio H & Lazarow PB (1985) Partial disassembly of peroxisomes. J. Cell Biol. 101: 294–305

    Google Scholar 

  • Avers CJ & Federman M (1968) The occurrence in yeast of cytoplasmic granules which resemble microbodies. J. Cell Biol. 37: 555–559

    Google Scholar 

  • Baker D, Hicke L, Rexach M, Schleyer M & Schekman R (1988) Reconstitution of SEC gene product-dependent intercompartmental protein transport. Cell 54: 335–344

    Google Scholar 

  • Bellion E & Goodman JM (1987) Proton ionophores prevent assembly of a peroxisomal protein. Cell 48: 165–173

    Google Scholar 

  • Bermingham-McDonogh O, Gralla EB & Selverstone Valentine J (1988) The copper, zinc-superoxide dismutase gene ofSaccharomyces cerevisiae: cloning, sequencing, and biological activity. Proc. Natl. Acad. Sci. USA 85: 4789–4793

    Google Scholar 

  • Borst P (1989) Peroxisome biogenesis revisited. Biochim Biophys Acta 1008: 1–13

    Google Scholar 

  • Botstein D & Fink GR (1988) Yeast: an experimental organism for modern biology. Science 240: 1439–1443

    Google Scholar 

  • Carlson M (1987) Regulation of sugar utilization in Saccharomyces species. J. Bacteriol. 169: 4873–4877

    Google Scholar 

  • Cohen G, Fessl F, Traczyk A, Rytka J & Ruis H (1985) Isolation of the catalase A gene ofSaccharomyces cerevisiae by complementation of the ctal mutation. Mol. Gen. Genet. 200: 74–79

    Google Scholar 

  • Cohen G, Rapatz W & Ruis H (1988) Sequence of theSaccharomyces cerevisiae CTA1 gene and amino acid sequence of catalase A derived from it. Eur. J. Biochem. 176: 159–163

    Google Scholar 

  • Cregg JM, van der Klei IJ, Sulter GJ, Veenhuis M & Harder W (1990) Peroxisome-deficient mutants ofHansenula polymorpha. Yeast 6: 87–97

    Google Scholar 

  • Cross HS & Ruis H (1978) Regulation of catalase synthesis inSaccharomyces cerevisiae by carbon catabolite repression. Mol. Gen. Genet. 166: 37–43

    Google Scholar 

  • Denis CL & Young ET (1983) Isolation and characterization of the positive regulatory gene ADR1 fromSaccharomyces cerevisiae Mol. Cell. Biol. 3: 360–370

    Google Scholar 

  • Desel H, Zimmermann R, Janes M, Miller F & Neupert W (1982) Biosynthesis of glyoxysomal enzymes inNeurospora Crassa. Ann. NY Acad. Sci. 386: 377–393

    Google Scholar 

  • Didion T & Roggenkamr R (1990) Deficiency of peroxisome assembly in a mutant of the methylotrophic yeastHansenula polymorpha. Curr. Genet. 17: 113–117

    Google Scholar 

  • Distel B (1990) Import and assembly of peroxisomal proteins in yeast. PhD thesis, Amsterdam

  • Distel B, Veenhuis M & Tabak HF (1987) Import of alcohol oxidase into peroxisomes ofSaccharomyces cerevisiae. EMBO J. 6: 3111–3116

    Google Scholar 

  • Dmochowska A, Dignard D, Maleszka R & Thomas DY (1990) Structure and transcriptional control of theSaccharomyces cerevisiae POX1 gene encoding acyl-coenzyme A oxidase. Gene 88: 247–252

    Google Scholar 

  • Duntze W, Neumann D, Gancedo JM, Atzpodien W & Holzer H (1969) Studies on the regulation and localization of the glyoxylate cycle enzymes inSaccharomyces cerevisiae. Eur. J. Biochem. 10: 83–89

    Google Scholar 

  • Einerhand AW, Voorn-Brouwer TM, Erdmann R, Kunau WH & Tabak HF (1991) Regulation of transcription of the gene coding for peroxisomal 3-oxoacyl-CoA thiolase ofSaccharomyces cerevisiae. Eur. J. Biochem. 200: 113–122

    Google Scholar 

  • Erdmann R, Veenhuis M, Mertens D & Kunau WH (1989) Isolation of peroxisome-deficient mutants ofSaccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 86: 5419–5423

    Google Scholar 

  • Erdmann R, Wiebel FF, Flessau A, Rytka J, Beyer A, Fröhlich KU & Kunau WH (1991) PAS1, a yeast gene required for peroxisome biogenesis, encodes a member of a novel family of putative ATPases. Cell 64: 499–510

    Google Scholar 

  • Fahimi HD & Sies H (1987) (Eds) Peroxisomes in Biology and Medicine. Springer-Verlag, Berlin

    Google Scholar 

  • Fujiki Y & Lazarow PB (1985) Post-translational import of fatty acyl-CoA oxidase and catalase into peroxisomes of rat liverin vitro. J. Biol. Chem. 260: 5603–5609

    Google Scholar 

  • Fujiki Y, Fowler S, Shio H, Hubbard AL & Lazarow PB (1982) Polypeptide and phospholipid composition of the membrane of rat liver peroxisomes: comparison with ER and mitochondrial membranes. J. Cell Biol. 93: 103–110

    Google Scholar 

  • Garrard LJ & Goodman JM (1989) Two genes encode the major membrane-associated protein of methanol-induced peroxisomes fromCandida boidinit. J. Biol. Chem. 264: 13929–13937

    Google Scholar 

  • Gietl C (1990) Glyoxysomal malate dehydrogenase from watermelon is synthesized with an amino-terminal transit peptide. Proc. Natl. Acad. Sci. USA 87: 5773–5777

    Google Scholar 

  • Gleeson MA & Sudbery E (1988) The methylotrophic yeasts. Yeast 4: 1–15

    Google Scholar 

  • Glick B, Wachter C & Schatz G (1991) Protein import into mitochondria: two systems acting in tandem? Trends in Cell Biol. 1: 99–103

    Google Scholar 

  • Gödecke A, Veenhuis M, Roggenkamp R, Janowicz ZA & Hollenberg CP (1989) Curr. Genet. 16: 13–20

    Google Scholar 

  • Gödecke A, Veenhuis M, Roggenkamp R, Janowicz ZA & Hollenberg CP (1989) Biosynthesis of the peroxisomal dihydroxyacetone synthase fromHansenula polymorpha inSaccharomyces cerevisiae induces growth but not proliferation of peroxisomes. Curr. Genet. 16: 13–20

    Google Scholar 

  • Goodman JM, Maher J, Silver PA, Pacifico A & Sanders D (1986) The membrane proteins of the methanol-induced peroxisome ofCandida boidinii: initial characterization and generation of monoclonal antibodies. J. Biol. Chem. 261: 3464–3468

    Google Scholar 

  • Goodman JM, Trapp SB, Hwang H & Veenhuis M (1990) Peroxisomes induced inCandida boidinii by methanol, oleic acid and D-alanine vary in metabolic function but share common integral membrane proteins. J. Cell Sci. 97: 193–204

    Google Scholar 

  • Gould SJ, Keller GA & Subramani S (1987) Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferase. J. Cell Biol. 105: 2923–2931

    Google Scholar 

  • Gould SJ, Keller GA, Hosken N, Wilkinson J & Subramani S (1989) A conserved tripeptide sorts proteins to peroxisomes. J. Cell Biol. 108: 1657–1664

    Google Scholar 

  • Gould SJ, Keller GA, Schneider M, Howell SH, Garrard LJ, Goodman JM, Distel B, Tabak HF & Subramani S (1990) Peroxisomal protein import is conserved between yeast, plants, insects and mammals. EMBO J. 9: 85–90

    Google Scholar 

  • Hansen H & Roggenkamp R (1989) Functional complementation of catalase-defective peroxisomes in a methylotrophic yeast by import of catalase A ofSaccharomyces cerevisiae. Eur. J. Biochem. 184: 173–179

    Google Scholar 

  • Hardeman D, Versantvoort C, van den Brink JM & van den Bosch H (1990) Studies on peroxisomal membranes. Biochim. Biophys. Acta 1027: 149–154

    Google Scholar 

  • Harder W & Veenhuis M (1989) Metabolism of one-carbon compounds. In: Rose AH & Harrison JS (Eds) The Yeasts, 2nd edition, Vol 3 (pp 289–316). Academic Press, London

    Google Scholar 

  • Hartig A, Ogris M, Cohen G & Binder M (1990) Fate of highly expressed proteins destined to peroxisomes inSaccharomyces cerevisiae. Curr. Genet. 18: 23–27

    Google Scholar 

  • Hartl FU, Ostermann J, Guiard B & Neupert W (1987) Successive translocation into and out of the mitochondrial matrix: targeting of proteins to the intermembrane space by a bipartite signal peptide. Cell 51: 1027–1037

    Google Scholar 

  • Hashimoto T (1990) Purification, properties and biosynthesis of peroxisomal β-oxidation enzymes. In: Tanaka K & Coates PM (Eds) Fatty Acid Oxidation: Clinical, Biochemical and Molecular Aspects (pp 137–152). Alan R. Liss, Inc., New York

    Google Scholar 

  • Hashimoto T, Kuwabara T, Usada N & Nagata T (1986) Purification of membrane polypeptides of rat liver peroxisomes. J. Biochem. 100: 301–310

    Google Scholar 

  • Hicke L & Schekman R (1990) Molecular machinery required for protein transport from the endoplasmic reticulum to the Golgi complex. BioEssays 12: 253–258

    Google Scholar 

  • Hijikata M, Ishii N, Kagamiyama H, Osumi T & Hashimoto T (1987) Structural analysis of cDNA for rat peroxisomal 3-ketoacyl-CoA thiolase. J. Biol. Chem. 262: 8151–8158

    Google Scholar 

  • Hiltunen JK, Wenzel B, Beyer A, Erdmann R, Fosså A & Kunau W-H (1992) Peroxisomal multifunctional β-oxidation protein ofSaccharomyces cerevisiae. J. Biol. Chem. 267: 6646–6653

    Google Scholar 

  • Höhfeld J, Veenhuis M & Kunau WH (1991) PAS3, aSaccharomyces cerevisiae gene encoding a peroxisomal integral membrane protein essential for peroxisome biogenesis. J. Cell Biol. 114: 1167–1178

    Google Scholar 

  • Höhfeld J, Mertens D, Wiebel FF & Kunau WH (1992) Defining components required for peroxisome biogenesis inSaccharomyces cerevisiae. In: Neupert W & Lill R (Eds), New Comprehensive Biochemistry Series, Vol 22, December 1992. Membrane Biogenesis and Protein Targeting, Elsevier Science Publishing Co., New York.

    Google Scholar 

  • Imanaka T, Small GM & Lazarow PB (1987) Translocation of acyl-CoA oxidase into peroxisomes requires ATP hydrolysis but not a membrane potential. J. Cell Biol. 105: 2915–2922

    Google Scholar 

  • Kamiryo T, Parthasarathy S & Numa S (1976) Evidence that acyl coenzyme A synthetase activity is required for repression of yeast acetyl coenzyme A carboxylase by exogenous fatty acids. Proc. Natl. Acad. Sci. USA 73: 386–390

    Google Scholar 

  • Keller GA, Warner TG, Steimer KS & Hallewell RA (1991) Cu,Zn superoxide dismutase is a peroxisomal enzyme in human fibroblasts and hepatoma cells. Proc. Natl. Acad. Sci. USA 88: 7381–7385

    Google Scholar 

  • Kindl H & Lazarow PB (1982) (Eds) Glyoxysomes and peroxisomes, Ann. NY Acad. Sci. 386, New York

  • Kirsch T, Löffler HG & Kindl H (1986) Plant acylCoA-oxidase: purification, characterization, and monomeric apoprotein. J. Biol. Chem. 261: 8570–8575

    Google Scholar 

  • Klionsky DJ, Herman PK & Emr SD (1990) The fungal vacuole: composition, function, and biogenesis. Microbiol. Rev. 54: 266–292

    Google Scholar 

  • Kunau WH, Kionka C, Ledebur A, Mateblowski M, Moreno de la Garza M, Schultz-Borchard U, Thieringer R & Veenhuis M (1987) β-oxidation systems in eukaryotic microorganisms. In: Fahimi HD & Sies H (Eds) Peroxisomes in Biology and Medicine (pp 128–140). Springer-Verlag, Berlin

    Google Scholar 

  • Kunau WH, Bühne S, Moreno de la Garza M, Kionka C, Mateblowski M, Schultz-Borchard U & Thieringer R (1988) Comparative enzymology of β-oxidation. Biochem. Soc. Transactions 16: 418–420

    Google Scholar 

  • Lageweg W, Tager JM & Wanders RJA (1991) Topography of very-long-chain-fatty-acid-activating activity in peroxisomes from rat liver. Biochem. J. 276: 53–56

    Google Scholar 

  • Lazarow PB (1984) The peroxisomal membrane. In: Büler E (Ed) Membrane Structure and Function, Vol 5 (pp 1–31). John Wiley & Sons, Inc. New York

    Google Scholar 

  • Lazarow PB & Fujiki Y (1985) Biogenesis of peroxisomes. Ann. Rev. Cell Biol. 1: 489–530

    Google Scholar 

  • Lazarow PB & Moser HW (1989) Disorders of peroxisome biogenesis. In: Scriver CR, Beaudet AL, Sly WS & Valle D (Eds) The Metabolic Basis of Inherited Disease, 6th ed (pp 1479–1509). McGraw-Hill, Inc. New York

    Google Scholar 

  • Lewin AS, Hines V & Small GM (1990) Citrate synthase encoded by the CIT2 gene ofSaccharomyces cerevisiae is peroxisomal. Mol. Cell. Biol. 10: 1399–1405

    Google Scholar 

  • Lüers G, Beier K, Hashimoto T, Fahimi HD & Völkl A (1990) Biogenesis of peroxisomes: sequential biosynthesis of the membrane and matrix proteins in the course of hepatic regeneration. Eur. J. Cell Biol. 52: 175–184

    Google Scholar 

  • McCammon MT, Veenhuis M, Trapp SB & Goodman JM (1990a) Association of glyoxylate and beta-oxidation enzymes with peroxisomes ofSaccharomyces cerevisiae. J. Bacteriol. 172: 5816–5827

    Google Scholar 

  • McCammon MT, Dowds CA, Orth K, Moomaw CR, Slaughter CA & Goodman JM (1990b) Sorting of peroxisomal membrane protein PMP47 fromCandida boidinii into peroxisomal membranes ofSaccharomyces cerevisiae. J. Biol. Chem. 265: 20098–20105

    Google Scholar 

  • Minard KI & McAllister-Henn L (1991) Isolation, nucleotide sequence analysis, and disruption of the MDH2 gene fromSaccharomyces cerevisiae: evidence for three isozymes of yeast malate dehydrogenase. Mol. Cell. Biol. 11: 370–380

    Google Scholar 

  • Mitraki A & King J (1989) Protein folding intermediates and inclusion body formation. Biotechnology 7: 690–697

    Google Scholar 

  • Miyazawa S, Osumi T, Hashimoto T, Ohno K, Miura S & Fujiki Y (1989) Peroxisome targeting signal of rat liver acyl-coenzyme A oxidase resides at the carboxy terminus. Mol. Cell. Biol. 9: 83–91

    Google Scholar 

  • Mori T, Tsukamoto T, Mori H, Tashiro Y & Fujiki Y (1991) Molecular cloning and deduced amino acid sequence of nonspecific lipid transfer protein (sterol carrier protein 2) of rat liver: a higher molecular mass (60 kD) protein contains the primary sequence of nonspecific lipid transfer protein as its C-terminal part. Proc. Natl. Acad. Sci. USA 88: 4338–4342

    Google Scholar 

  • Neupert W, Hartl FU, Craig E & Pfanner N (1990) How do polypeptides cross the mitochondrial membranes? Cell 63: 447–450

    Google Scholar 

  • Newman AP & Ferro-Novick S (1990) Defining components required for transport from the ER to the Golgi complex in yeast. BioEssays 12: 485–491

    Google Scholar 

  • Numa S (1981) Two long-chain acylCoenzyme A synthetases: their different roles in fatty acid metabolism and its regulation. Trends in Biochem. Sci 6: 113–115

    Google Scholar 

  • Osumi T & Fujiki Y (1990) Topogenesis of peroxisomal proteins. Bio Essays 12: 217–222

    Google Scholar 

  • Parish RW (1975) The isolation and characterization of peroxisomes (microbodies) from baker's yeast,Saccharomyces cerevisiae. Arch. Microbiol. 105: 187–192

    Google Scholar 

  • Pfanner N, Söllner T & Neupert W (1991) Mitochondrial import receptors for precursor proteins. Trends in Biochem. Sci. 16: 63–67

    Google Scholar 

  • Pringle JR, Preston RA, Adams AEM, Drubin DG, Haarer BK & Jones EW (1989) Fluorescence microscopy methods for yeast. In: Tartakoff AM (Ed) Methods in Cell Biology, Vol 31 (pp 357–435). Academic Press, New York

    Google Scholar 

  • Rose AH & Harrison JS (1987–1991) (Eds) The Yeasts, 2nd edition, Vol 1–4. Academic Press, London

    Google Scholar 

  • Rosenkrantz M, Alam T, Kim KS, Clark BJ, Srere PA & Guarente LP (1986) Mitochondrial and nonmitochondrial citrate synthases inSaccharomyces cerevisiae are encoded by distinct homologous genes. Mol. Cell. Biol. 6: 4509–4515

    Google Scholar 

  • Rothman JH, Yamashiro CT, Kana PM & Stevens TH (1989) Protein targeting to the yeast vacuole. Trends in Biochem. Sci. 14: 347–350

    Google Scholar 

  • Rusnak N, Shackelford J, Gould SJ, Subramani S & Krisans SK (1990) Recognition of a peroxisomal form of HMG-CoA reductase protein by an antibody that detects a peroxisomal targeting signal. J. Cell Biol. 111: 195a

  • Rytka J, Sledziewski A, Lukaszkiewicz J & Bilinski T (1978) Haemoprotein formation in yeast III. The role of carbon catabolite repression in the regulation of catalase A and T formation. Mol. Gen. Genet. 160: 51–57

    Google Scholar 

  • Sakuraba H, Fujiwara S & Noguchi T (1991) Purification and characterization of peroxisomal apo and holo alanine: glyoxylate aminotransferase from bird liver. Arch. Biochem. Biophys 286: 453–460

    Google Scholar 

  • Santos MJ, Imanaka T, Shio H, Small GM & Lazarow PB (1988) Peroxisomal membrane ghosts in Zellweger Syndrome — aberrant organelle assembly. Science 239: 1536–1538

    Google Scholar 

  • Sengstad C, Stirling C, Schekman R & Rine J (1990) Genetic and biochemical evaluation of eucaryotic membrane protein topology: multiple transmembrane domains ofSaccharomyces cerevisiae 3-Hydroxy-3-Methylglutaryl Coenzyme A reductase. Mol. Cell. Biol. 10: 672–680

    Google Scholar 

  • Silver PA (1991) How proteins enter the nucleus. Cell 64: 489–497

    Google Scholar 

  • Simon M, Adam G, Rapatz W, Spevak W & Ruis H (1991) TheSaccharomyces cerevisiae ADR1 gene is a positive regulator of transcription of genes encoding peroxisomal proteins. Mol. Cell. Biol. 11: 699–704

    Google Scholar 

  • Simon M, Binder M, Adam G, Hartig A & Ruis H (1992) Control of peroxisome proliferation inSaccharomyces cerevisiae by ADR1, SNF1 (CAT1, CCR1) and SNF4 (CAT3). Yeast 8: 303–309

    Google Scholar 

  • Skoneczny M, Chelstowska A & Rytka J (1988) Study of the coinduction by fatty acids of catalase A and acyl CoA oxidase in standard and mutantSaccharomyces cerevisiae strains. Eur. J. Biochem. 174: 297–302

    Google Scholar 

  • Small GM, Imanaka T, Shio H & Lazarow PB (1987) Efficient association ofin vitro translation products with purified, stableCandida tropicalis peroxisomes. Mol. Cell. Biol. 7: 1848–1855

    Google Scholar 

  • Small GM, Szabo LJ & Lazarow PB (1988) Acyl-CoA oxidase contains two targeting sequences each of which can mediate protein import into peroxisomes. EMBO J. 7: 1167–1173

    Google Scholar 

  • Spevak W, Fessl F, Rytka J, Traczyk A, Skoneczny M & Ruis H (1983) Isolation of the catalase T structural gene ofSaccharomyces cerevisiae by functional complementation. Mol. Cell. Biol. 3: 1545–1551

    Google Scholar 

  • Sulter GJ, Looyenga L, Veenhuis M & Harder W (1990) Occurence of peroxisomal membrane proteins in methylotrophic yeasts grown under different conditions. Yeast 6: 35–43

    Google Scholar 

  • Susani M, Zimniak P, Fessl F & Ruis H (1976) Localization of catalase A in vacuoles ofSaccharomyces cerevisiae: evidence for the vacuolar nature of isolated ‘yeast peroxisomes’. Hoppe-Seyler's Z. Physiol. Chem. 357: 961–970

    Google Scholar 

  • Swinkels BW, Gould SJ, Bodnar AG, Rachubinski RA & Subramani S (1990) Identification of a novel peroxisomal targeting signal in the amino-terminal prepiece of 3-ketoacyl thiolase. J. Cell Biol. 111, 386a

  • Szabo AS & Avers CJ (1969) Some aspects of regulation of peroxisomes and mitochondria in yeast. Ann. NY Acad. Sci. 168: 302–312

    Google Scholar 

  • Szabo LJ, Small GM & Lazarow PB (1989) The nucleotide sequence of POX18, a gene encoding a small oleate-inducible peroxisomal protein fromCandida tropicalis. Gene 75: 119–126

    Google Scholar 

  • Takada Y & Noguchi T (1985) Characteristics of alanine: glyoxylate aminotransferase fromSaccharomyces cerevisiae, a regulatory enzyme in the glyoxylate pathway of glycine and serine biosynthesis from tricarboxylic acid-cycle intermediates. Biochem. J. 231: 157–163

    Google Scholar 

  • Tan H, Okazaki K, Kubota I, Kamiryo T & Utiyama H (1990) A novel peroxisomal nonspecific lipid-transfer protein fromCandida tropicalis. Gene structure, purification and possible role in β-oxidation. Eur. J. Biochem. 190: 107–112

    Google Scholar 

  • Tanaka A & Fukui S (1989) Metabolism of n-alkanes. In: Rose AH & Harrison JS (Eds) The Yeasts, 2nd edition, Vol 3 (pp 261–287). Academic Press, London

    Google Scholar 

  • Thieringer R, Shio H, Han Y, Cohen G & Lazarow PB (1991) Peroxisomes inSaccharomyces cerevisiae: immunofluorescence analysis and import of catalase A into isolated peroxisomes. Mol. Cell. Biol. 11: 510–522

    Google Scholar 

  • Tsukamoto T, Miura S & Fujiki Y (1991) Restoration by a 35 k membrane protein of peroxisome assembly in a peroxisome-deficient mammalian cell mutant. Nature 350: 77–81

    Google Scholar 

  • van der Klei IJ, Harder W & Veenhuis M (1991) Selective inactivation of alcohol oxidase in two peroxisome deficient mutants of the yeastHansenula polymorpha. Yeast (in press)

  • Veenhuis M & Goodman JM (1990) Peroxisomal assembly: membrane proliferation precedes the induction of the abundant matrix proteins in the methylotrophic yeastCandida boidinii. J. Cell Sci. 96: 583–590

    Google Scholar 

  • Veenhuis M & Harder W (1991) Microbodies. In: Rose AH & Harrison JS (Eds) The Yeasts, 2nd edition, Vol 4 (pp 601–653). Academic Press, London

    Google Scholar 

  • Veenhuis M, Mateblowski M, Kunau WH & Harder W (1987) Proliferation of microbodies inSaccharomyces cerevisiae. Yeast 3, 77–84

    Google Scholar 

  • Wanner G & Theimer RR (1982) Two types of microbodies inNeurospora crassa. Ann. NY Acad. Sci. 386: 269–284

    Google Scholar 

  • Yamada T, Nawa H, Kawamoto S, Tanaka A & Fukui S (1980) Subcellular localization of long-chain alcohol dehydrogenase and aldehyde dehydrogenase in n-alkane grownCandida tropicalis. Arch. Microbiol. 128: 145–151

    Google Scholar 

  • Yoo HS & Cooper TG (1989) The DAL7 promoter consists of multiple elements that cooperatively mediate regulation of the gene's expression. Mol. Cell. Biol. 9: 3231–3243

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunau, WH., Hartig, A. Peroxisome biogenesis inSaccharomyces cerevisiae . Antonie van Leeuwenhoek 62, 63–78 (1992). https://doi.org/10.1007/BF00584463

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00584463

Key words

Navigation