Skip to main content
Log in

An electrochemical hydrocyclone cell for the treatment of dilute solutions: approximate plug-flow model for electrodeposition kinetics

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The mass transfer conditions in a hydrocyclone cell have been analysed and an approximate plug-flow model has been developed to describe metal ion depletion during batch recycle operation. The resulting concentration-time relationship and reaction rate equation has been shown to describe satisfactorily the experimental data obtained for the electrodeposition of copper and silver from dilute solutions. Moreover, these relationships have enabled the evaluation of mass transfer coefficients in the hydrocyclone cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a 1,a 2,b :

numerical exponents

C :

concentration (mol dm−3)

C o :

initial bath concentration (mol dm−3)

C(0):

cell inlet concentration (mol dm−3)

C(L):

cell outlet concentration (mol dm−3)

k :

rate constant (h−1)

K :

mass transfer coefficient (ms−1)

K L :

volumetric mass transfer coefficient = 2πRLK (m3 s−1)

L :

‘active’ length of the cylindrical cathode (m)

Q :

volumetric flow rate (m3 s−1)

r :

inside radius of the conical part of the cell

r A :

reaction rate of component A (mol dm−3 h−1)

R :

inside radius of the cylindrical part of the cell (m)

t :

time

u :

vertical (axial) velocity in the annulus

U :

cell voltage (V)

υt :

horizontal (tangential) velocity in the annulus

V B :

volume of the reservoir/bath

V R :

volume of the cell/reactor

τB :

residence of time of the reservoir

References

  1. D. Bradley, ‘The Hydrocyclone’, Pergamon Press, Oxford (1965) pp. 9–20.

    Google Scholar 

  2. R. W. Day,Chem. Engng. Prog. 69 (1973) 67.

    Google Scholar 

  3. N. Dhamo and R. Kammel,Metall 46 (9), (1992) 912.

    Google Scholar 

  4. D. Bradley,, pp. 107–122.

    Google Scholar 

  5. R. H. Perry, D. W. Green and J.O. Maloney, ‘Perry's Chemical Engineers' Handbook’ 6th edn. McGrawHill, New York (1984) section 20 (82).

    Google Scholar 

  6. D. S. Azbel, N. P. Cheremisinoff, ‘Fluid Mechanics and Unit Operations’, Ann Arbor Science Publications (1983) pp. 608–612.

  7. R. E. W. Jansson,Electrochim. Acta 23 (1978) 1345.

    Google Scholar 

  8. D. R. Gabe,J. Appl. Electrochem. 4 (1974) 91.

    Google Scholar 

  9. N. A. Pakryvailo, E. B. Kaberdina and M.I. Syrkin,ibid. 21 (1991) 1077.

    Google Scholar 

  10. D. R. Gabe and D. J. Robinson,Electrochim. Acta 17 (1972) 1121.

    Google Scholar 

  11. A. F. S. Afshar and D. R. Gabe,J. Appl. Electrochem. 21 (1991) 32.

    Google Scholar 

  12. L. J. J. Janssen and J. G. Wijers,ibid. 19 (1989) 823.

    Google Scholar 

  13. J. Legrand, P. Legentilhomme and H. Aouabed, Electrochim. Acta25 (1980) 669.

    Google Scholar 

  14. J. C. Cox,US Patent 4 372 829 (1983).

  15. K. R. Houseman,US Patent 4 439 300 (1984).

  16. S. M. Zuwala and L. D. Cass,US Patent 4 530 748 (1985).

  17. F. C. Walsh and G. Wilson,Trans. Inst. Met. Finish. 64 (1986) 55.

    Google Scholar 

  18. R. J. Herbst and R. R. Renk,PCT Int. Appl. WO 88 09 772 (1988).

  19. P. Legentilhomme and J. Legrand,J. Appl. Electrochem. 20 (1990) 216.

    Google Scholar 

  20. J. Legrand, P. Dumargue and F. Coeuret,J. Appl. Electrochem. 21 (1991) 1063.

    Google Scholar 

  21. D. F. Kelsall,Trans. Insm. Chem. Engrs. 30 (1952) 87.

    Google Scholar 

  22. A. T. S. Walker and A. A. Wragg, Electrochim. Acta22 (1977) 1129.

    Google Scholar 

  23. L. H. Mustoe and A. A. Wragg,J. Appl. Electrochem. 8 (1978) 467.

    Google Scholar 

  24. D. J. Pickett,Electrochim. Acta 18 (1973) 835.

    Google Scholar 

  25. O. Levenspiel, ‘Chemical Reactor Engineering’, 2nd edn John Wiley & Sons, New York (1972) p. 67.

    Google Scholar 

  26. R. E. W. Jansson and G.A. Ashworth,Electrochim. Acta 22 (1977) 1301.

    Google Scholar 

  27. T. Sasaki and T. Tshikawa, Electrochim. Acta31 (1986) 745.

    Google Scholar 

  28. V. A. Ettel, B. V. Tilak and A. S. Gendron, J Electrochem. Soc.121 (1974) 867.

    Google Scholar 

  29. S. Ehdaie, M. Fleischmann and R. E. W. Jansson, J. Appl. Electrochem.12 (1982) 59.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhamo, N. An electrochemical hydrocyclone cell for the treatment of dilute solutions: approximate plug-flow model for electrodeposition kinetics. J Appl Electrochem 24, 745–750 (1994). https://doi.org/10.1007/BF00578089

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00578089

Keywords

Navigation