Skip to main content
Log in

Crystallography-based prediction of plastic anisotropy of polycrystalline materials

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The on-line prediction of metal sheet formability requires that both material characterization (texture identification) and yield loci predetermination be done in very shor time intervals. Of two applicable approaches, i.e., continuum mechanics and crystallography-based methods, only the latter are suitable for this purpose. Several models of plasticity of a polycrystalline material were reviewed, and their applicability to the prediction of plastic anisotropy of face-centered cubic (FCC) metals was evaluated. A tailored set of cold-rolled copper alloy samples was designed and manufactured, representing the wide spectrum of textures and cold work levels typical for the sheet metal industry. The texture was quantitatively described in the form of the orientation distribution functions derived by the inversion of four incomplete pole figures. The Taylor-Bishop-Hill model was applied in order to calculate the planar variation of the plastic strain ratio. The continuum mechanics of textured polycrystals approach was also used for the prediction of the plastic strain-rate ratio for the same set of deformed materials. The theoretical predictions were compared with the plastic strain ratios measured in tensile tests using strain gauges. The applicability of the models for prediction of the plastic anisotropy of FCC metals was discussed in view of the operating deformation mechanisms and other factors such as strain hardening sensitivity and grain size/shape effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. Bunge,Texture Analysis in Materials Science (London: Butterworth & Co., 1982).

    Google Scholar 

  2. H. D. Merchant and D. J. Morris, eds.,Textures in Non-Ferrous Metals and Alloys (Warrendale, PA: TMS, 1985).

    Google Scholar 

  3. C. M. Sayers, Ultrasonic velocities in anisotropic polycrystalline aggregates,J. Appl. Phys. D: Appl. Phys. 15:2157 (1982).

    Google Scholar 

  4. C. M. Sayers, Angular dependent ultrasonic wave velocities in aggregates of hexagonal crystals,Ultrasonics 24:289 (1986).

    Google Scholar 

  5. R. B. Thompson, S. S. Lee, and J. F. Smith, Angular dependence of ultrasonic wave propagation in a stressed orthorhombic continuum: Theory and application to the measurement of stress and texture,J. Acoust. Soc. Am. 80(3):921 (1986).

    Google Scholar 

  6. R. B. Thompson, S. S. Lee, and J. F. Smith, Relative anisotropies of plane waves and guided modes in thin orthorhombic plates: Implication for texture characterization,Ultrasonics 25:133 (May 1987).

    Google Scholar 

  7. A. V. Clarket al., Texture monitoring in aluminum alloys: A comparison of ultrasonic and neutron and diffraction measurement,Ultrasonics 26:189 (July 1988).

    Google Scholar 

  8. M. Hirao, K. Aoki, and H. Fukuoka, Texture of polycrystalline metals characterized by ultrasonic velocity measurements,J. Acoust. Soc. Am. 81(5):1434 (May 1987).

    Google Scholar 

  9. M. Hirao, N. Hara, and H. Fukuoka, Ultrasonic monitoring of texture in cold-rolled steel sheets,J. Acoust. Soc. Am. 84(2):667 (Aug. 1988).

    Google Scholar 

  10. R. B. Thompson, J. F. Smith, S. S. Lee, and G. C. Johnson, A comparison of ultrasonic and X-ray determinations of texture in thin Cu and Al plates,Met. Trans. A.,20A:2431 (1989).

    Google Scholar 

  11. D. Danielet al., Acoustoelastic determination of the fourth order ODF coefficients and application toR-value prediction,Mater. Res. Soc. Symp. Proc. 142:77 (1989).

    Google Scholar 

  12. E. P. Papadakiset al., An automatic instrument for the ultrasonic measurement of texture,Proc. Fourth Int. Symp. Nondestructive Characterization of Materials, Annapolis, MD, June 11–14, 1990 (in press).

  13. K. Kawashima, Nondestructive Measurement of Texture and Plastic Strain Ratio of Steel Sheets Using EMATs, ibid.

  14. R. J. Roe, Description of crystallite orientation in polycrystalline materials. III. General solution to pole figure inversion,J. Appl. Phys.,36(6):2044 (1965).

    Google Scholar 

  15. H. J. Bunge, Zur darstellung allgemeiner texturen,Z. Metallkde 56:872 (1965).

    Google Scholar 

  16. H. J. Bunge,Mathematische Methoden der Texturanalyse (Akademie, Berlin, 1969).

    Google Scholar 

  17. H. J. Kopineck and H. Otten, Texture analyzer for on-liner m -value estimation,Textures Microstruct. 7:97 (1987).

    Google Scholar 

  18. H. J. Bunge, Prediction of anisotropy from orientation distribution functions,Textures in Non-Ferrous Metals and Alloys, H.D. Merchant and D.J. Morris, eds. (TMS, Warrendale, PA, 1985). p. 145.

    Google Scholar 

  19. W. G. Fricke and J. T. Ioannov, A practical texture measurement instrument,ICOTOM 8, J. S. Kallend and G. Gottstein, eds. (TMS, Warrendale, PA, 1988), p. 257.

    Google Scholar 

  20. J. Imhof, Determination of the orientation distribution function from one pole figure,Textures Microstruct.5:72 (1982).

    Google Scholar 

  21. J. A. Szpunar, P. Blandford, and D. C. Hinz, Calculation of the crystal orientation distribution function from synchroton radiation experimental data,J. Appl. Cryst. 22:559 (1989).

    Google Scholar 

  22. G. I. Taylor, Plastic strain in metals,J. Inst. Met. 62:307 (1938).

    Google Scholar 

  23. J. F. W. Bishop and R. Hill, A theory of the plastic distortion of a polycrystalline aggregate under combined stress,Phil. Mag. 42:414 (1951).

    Google Scholar 

  24. J. F. W. Bishop and R. Hill, A theoretical derivation of the plastic properties of a polycrystalline face-centered metal,Phil. Mag. 42:1298 (1951).

    Google Scholar 

  25. J. F. W. Bishop, A theoretical examination of the plastic deformation of crystals in solids,Phil. Mag. 44:51 (1953).

    Google Scholar 

  26. G. Y. Chin and W. L. Mammel, Generalization and equivalence of the minimum work (Taylor) and maximum work (Bishop-Hill) principles for crystal plasticity,Trans. Metall. Soc. AIME 245:1211 (June 1969).

    Google Scholar 

  27. J. Hirsch, and K. Lücke, Mechanism of deformation and development of rolling textures in polycrystalline FCC metals-Part I-III,Acta Metall. 36(11):2883 (1988).

    Google Scholar 

  28. H. Honneff and H. Mecking, A method for the determination of the active slip systems and orientation changes during single crystal deformation,Proc. ICOTOM 5 Aachen, G. Gottstein and K. Lücke, eds. (Springer, Berlin, 1978), p. 265.

    Google Scholar 

  29. P. Van Houtte,Mater. Sci. Eng. 55:69 (1982).

    Google Scholar 

  30. P. Van Houtte, Calculation of the yield locus of textured polycrystals using the Taylor and relaxed Taylor theory,Textures Microstruc. 7:29 (1987).

    Google Scholar 

  31. R. Fortunier and J. H. Driver, A continuous constraints model for large strain deformation,Acta Metall. 35(2):509 (1987).

    Google Scholar 

  32. R. Fortunier and J. H. Driver, Grain reorientations in rolled aluminum sheet: Comparison with prediction of continuous constraints model,Acta Metall. 35(6):1355 (1987).

    Google Scholar 

  33. R. Fortunier, J. H. Driver, J. Hirsch, and J. J. Jonas, Application of the continuous constraints model to the prediction of rolling textures,Eighth Int. Conf. on Textures of Materials (ICOTOM 8), J. S. Kallend and G. Gottstein, eds. (The Metallurgical Society, 1988), p. 319.

  34. V. F. Kocks, A. S. Argon, and M. F. Ashby,Prog. Mater. Sci. 19 (1975).

  35. G. Sachs,Z. d. Ver. Deut. Ing. 72:734 (1928).

    Google Scholar 

  36. E. Schmid,Proc. Int. Conf. Appl. Mech., Delft 342 (1924).

  37. N. Kanetake, Y. Tozawa, and T. Otani, Calculations from texture of earing in deep drawing for FCC metal sheets,Int. J. Mech. Sci. 25(5):337 (1983).

    Google Scholar 

  38. N. Kanetake, Y. Tozawa, and S. Yamamoto, Calculations of earing in deep drawing for BCC metal sheets using texture data,Int. J. Mech. Sci. 27(4):249 (1985).

    Google Scholar 

  39. N. Kanetake and Y. Tozawa, Calculation of macroscopic deformation behavior using texture data for metal sheets,Eighth Int. Conf. on Textures of Materials (ICOTOM 8), J. S. Kallend and G. Gottstein, eds. (The Metallurgical Society, 1988), p. 1005.

  40. J. Hirsch, R. Musick, and K. Lücke, eds. Comparison between earing,R-values and 3-dimensional orientation distribution functions of copper and brass sheets, ICOTOM 5, G. Gottstein and K. Lücke, eds. (Springer, Berlin, 1978), p. 437.

    Google Scholar 

  41. F. Montheillet, P. Gilormini, and J. J. Jonas, Relation between axial stresses and texture development during torsion testing: A simplified theory,Acta Metall. 33(4):705 (1985).

    Google Scholar 

  42. R. Hill, A theory of the yielding and plastic flow of anisotropic metals,Proc. R. Soc. Lond. A193:281 (1950).

    Google Scholar 

  43. PH. Lequeu, P. Gilormini, F. Montheillet, B. Bacroix, and J. J. Jonas, Yield surfaces for textured polycrystals—II. Analytical approach,Acta Metall. 35(950):1159 (1987).

    Google Scholar 

  44. PH. Lequeu, F. Montheillet, and J. J. Jonas, A simplified method for the prediction of plastic anisotropy in rolled sheet, inTextures in Non-Ferrous Alloys, H. D. Merchant and J. G. Morris, eds. (The Metallurgical Society, 1985), p. 189.

  45. F. Montheillet, PH. Lequeu, P. Gilormini, and J. J. Jonas, A new method for describing the anisotropic properties of textured polycrystals,Eighth Int. Conf. on Textures of Materials (ICOTOM 8), J. S. Kallend and G. Gottstein, eds. (The Metallurgical Society, 1988), p. 1031.

  46. ASTM Designation: E517-81 (Reapproved 1987), Standard Test Method for Plastic Strain Ratior for Sheet Metal.

  47. W. Truskowski,Metall. Trans. 7A:327 (1976).

    Google Scholar 

  48. H. Hu,Metall. Trans. 6A:2307 (1976).

    Google Scholar 

  49. G. Jegaden, J. Voinecht, and P. Roquet,Mem. Sci. Rev. Metall. 59:273 (1962).

    Google Scholar 

  50. Y. C. Liu and L. K. Johnson, Hills plastic strain ratio of sheet metals,Metall. Trans. 16A:1531 (August 1985).

    Google Scholar 

  51. P. I. Welch and H. J. Bunge, Influence of grain size on plastic anisotropy in low-carbon steels,Materi. Sci. Technol. 2:354 (1988).

    Google Scholar 

  52. E. O. Hall,Proc. Phys. Soc. Lond. 643:747 (1951).

    Google Scholar 

  53. N. J. Petch,J. Iron Steel Inst. Lond. 173:25 (1953).

    Google Scholar 

  54. H. J. Bunge, Texture and directional properties of materials, inDirectional Properties of Materials (DGM Informationsgesellschaft mbH, Oberusel, 1988), p. 1.

    Google Scholar 

  55. A. D. Rollett, M. G. Stout, and U. F. Kocks,Polycrystal plasticity as applied to the problem of in-plane anisotropy in rolled cubic metals, in Advances in Plasticity, A. S. Khan and M. Tokuda, eds. (Pergamon Press, Oxford, 1990), p. 69.

    Google Scholar 

  56. F. Wagner, H. J. Bunge, and P. Van Houtte, in Influence of grain size and shape on texture formation and anisotropy coefficient,Eighth Int. Conf. on Textures of Materials (ICOTOM 8), J. S. Kallend and G. Gottstein, eds. (TMS, Warrendale, PA, 1988), p. 369.

    Google Scholar 

  57. C. S. Viana, J. S. Kallend, and G. J. Davies, The use of texture data to predict the yield locus of metal sheets,Int. J. Mech. Sci. 21:355 (1979).

    Google Scholar 

  58. O. Engler, J. Mizera, J. H. Driver, and K. Lücke, Texture and plastic anisotropy in model aluminum-lithium alloys,Proc. ICOTOM 9 (Avignon, France, 1990) (in press).

    Google Scholar 

  59. H. J. Bunge, Texture and directional properties of materials, inDirectional Properties of Materials, (DGM Informationsgesellschaft, Oberusel, 1988), p. 1.

    Google Scholar 

  60. H. Hu, Texture of metals,Texture 1:233 (1974).

    Google Scholar 

  61. H. Hu, P. R. Sperry, and P. A. Beck, Rolling textures in face-centered cubic metals,J. Met. 76 (Jan. 1952).

  62. L. G. Schultz,J. Appl. Phys. 20:1030 (1945).

    Google Scholar 

  63. J. Hirsch, G. Burmeister, L. Hoenen, and K. Lücke, Autex III—A high speed texture goniometer and data processing system,Experimental Techniques of Texture Analysis, H. J. Bunge, ed. (Informationsgesellschaft, Oberusel, 1986), p. 63.

    Google Scholar 

  64. J. Pospiech and J. Jura, Determination of the orientation distribution function from incomplete pole figures,Z. Metallkde,65(4):324 (1974).

    Google Scholar 

  65. J. Hirsch, M. Loeck, L. Loof, and K. Lücke,Proc. ICOTOM 7 (Noordwijkerhout, 1984), p. 765.

  66. J. Hirsch and K. Lücke, Texture analysis with the help of model functions, inTheoretical Methods of Texture Analysis, H. J. Bunge, ed., (DGM Informationsgesellschaft, Oberusel, 1987), p. 53.

    Google Scholar 

  67. C. J. Yu, Ph. D. thesis, The Pennsylvania State University, 1991.

  68. K. J. Kozaczek, Ph. D. thesis, The Pennsylvania State University, 1991.

  69. A. Kochendörfer,Reine und Angevandte Metalkunde (Springer, Berlin, 1941).

    Google Scholar 

  70. H. Bunge, M. Schultze, and D. Grzesik, Calculation of yield locus of polycrystalline materials according to the Taylor theory, inPeine + Saltzgitter Berichte, (Sonderheft, 1980).

  71. T. Leffers, R. J. Asaro, J. H. Driver, and U. F. Kocks, Deformation textures: Simulation Principles Panel Report, inICOTOM 8, J. S. Kallend and G. Gottstein, eds. (TMS, Warrendale, Pennsylvania, 1988), p. 265.

    Google Scholar 

  72. K. Hashimoto and H. Margolin, The role of elastic interaction stresses on the onset of slip in polycrystalline alpha brass—I. Experimental determination of operating slip systems and qualitative analysis,Acta Metall. 31(5):773 (1983).

    Google Scholar 

  73. K. Hashimoto and H. Margolin, The role of elastic interaction stresses on the onset of slip in polycrystalline alpha brass—II. Rationalization of slip behavior,Acta Metall. 31(5):787 (1983).

    Google Scholar 

  74. Z. R. Wang and H. Margolin, Slip in a stress gradient: Multiple slip and cross slip in an alpha brass single crystal oriented for easy glide,Acta Metall. 32(6):977 (1984).

    Google Scholar 

  75. D. Juul Jensen and N. Hansen, Flow stress anisotropy in aluminum,Acta Metall. 38(8):1369 (1990).

    Google Scholar 

  76. T. Leffers and P. Van Houtte,Acta Metall. 37:1191 (1989).

    Google Scholar 

  77. T. Leffers and J. B. Bilde-Sørenson, Intra- and inter-granular heterogeneities in the plastic deformation of brass during rolling,Acta Metall. Mater. 38(10):1917 (1990).

    Google Scholar 

  78. H. E. Deve and R. J. Asaro, The development of plastic failure in crystalline materials: Shear bands in FCC polycrystals,Metall. Trans. A. 20A (April 1989).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozaczek, K.J., Ruud, C.O., Hirsch, J. et al. Crystallography-based prediction of plastic anisotropy of polycrystalline materials. J Nondestruct Eval 12, 97–107 (1993). https://doi.org/10.1007/BF00565912

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00565912

Key words

Navigation