Skip to main content
Log in

Small-angle neutron scattering study of creep cavity nucleation and growth in sintered alumina

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The early stages of creep cavitation in sintered alumina are characterized using small-angle neutron scattering (SANS). It is found that the initial cavity density is of the order of 1011 cm−3, and that the average initial pore is approximately 60 nm in radius. The incubation time for nucleating additional pores during subsequent creep is extremely short, in agreement with the theory based on the “precipitation” of grain-boundary diffusing vacancies. Pore density at constant stress and temperature is a linearly increasing function of time, as predicted by classical nucleation theory. However, a local stress of 10−2 E is required to achieve the measured nucleation rate. Cavities are observed to lie primarily on two-grain junctions in linear arrays, with an average cavity radius of approximately 60 nm. It is hypothesized that the cavities nucleate at grain boundary ledges which provide the necessary local stress concentrations. Calculation of the individual cavity growth rate yields a zero or near zero value. This suggests a rapid transient growth period following nucleation which quickly decreases to a negligible growth rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Evans and A. Rana, Acta Metall. 28 (1980) 129.

    Google Scholar 

  2. A. S. Argon, I. W. Chen and C. W. Lau, “Creep-Fatigue-Environmental Interactions”, edited by R. M. Pelloux and N. S. Stoloff (The Metallurgical Society of AIME, Warrendale, PA, 1980) p. 46.

    Google Scholar 

  3. R. Raj, Acta Metall. 26 (1978) 995.

    Google Scholar 

  4. L.-E. Svensson and G. L. Dunlop, Can. Met. Q. 18 (1979) 39.

    Google Scholar 

  5. A. G. Evans, J. R. Rice and J. P. Hirth, J. Amer. Ceram. Soc. 63 (1980) 368.

    Google Scholar 

  6. R. Raj and M. F. Ashby, Acta Metall. 23 (1975) 653.

    Google Scholar 

  7. R. Becker and W. During, Amer. Phys. 24 (1935) 719.

    Google Scholar 

  8. W. C. Koehler and R. W. Hendricks, J. Appl. Phys. 50 (1979) 1951.

    Google Scholar 

  9. R. Page, J. R. Weertman and M. Roth, Acta Metall. 30 (1982) 1357.

    Google Scholar 

  10. R. W. Hendricks, J. Schelten and W. Schmatz, Phil. Mag. 30 (1974) 819.

    Google Scholar 

  11. M. H. Yoo, J. C. Ogle, B. S. Borie, E. H. Lee and R. W. Hendricks, Acta Metall. 30 (1982) 1733.

    Google Scholar 

  12. T. Saegusa, J. R. Weertman, J. B. Cohen and M. Roth, J. Appl. Cryst. 11 (1978) 602.

    Google Scholar 

  13. H. L. Marcus and M. E. Fine, J. Amer. Ceram. Soc. 55 (1972) 568.

    Google Scholar 

  14. D. R. Clarke, ibid 63 (1980) 339.

    Google Scholar 

  15. W. C. Johnson and D. F. Stein, ibid. 58 (1975) 487.

    Google Scholar 

  16. W. C. Johnson, Met. Trans. 8A (1977) 1413.

    Google Scholar 

  17. R. I. Taylor, J. P. Coad and R. J. Brook, J. Amer. Ceram. Soc. 57 (1974) 539.

    Google Scholar 

  18. R. I. Taylor, J. P. Coad and A. E. Hughes, ibid. 59 (1976) 374.

    Google Scholar 

  19. W. C. Johnson, ibid. 61 (1978) 234.

    Google Scholar 

  20. P. E. C. Franken and A. P. Gehring, J. Mater. Sci. 16 (1981) 384.

    Google Scholar 

  21. A. H. Heuer, N. J. Tighe and R. M. Cannon, J. Amer. Ceram. Soc. 63 (1980) 53.

    Google Scholar 

  22. D. R. Clarke, private communication (1982).

  23. R. Page and J. Lankford, unpublished research.

  24. M. Roth, J. Appl. Cryst. 10 (1977) 122.

    Google Scholar 

  25. A. Guinier Ann. Phys, Paris 12 (1939) 161.

    Google Scholar 

  26. Idem, “X-Ray Diffraction” (Freeman, San Francisco, 1963).

    Google Scholar 

  27. G. Porod, Kolloid Z 125 (1952) 51.

    Google Scholar 

  28. R. A. Page and J. Lankford, J. Amer. Ceram. Soc. 66 (1983) C-146.

    Google Scholar 

  29. I. S. Fedorova and P. W. Schmidt, J. Appl. Cryst. 11 (1978) 405.

    Google Scholar 

  30. O. L. Brill and P. W. Schmidt, J. Appl. Phys. 39 (1968) 2274.

    Google Scholar 

  31. A. H. Heuer, J. Amer. Ceram. Soc. 62 (1979) 226.

    Google Scholar 

  32. W. R. Cannon and O. D. Sherby, ibid. 60 (1977) 44.

    Google Scholar 

  33. C. B. Carter, D. L. Kohlstedt and S. L. Sass, ibid. 63 (1980) 623.

    Google Scholar 

  34. H. J. Frost and M. F. Ashby, “Deformation-Mechanism Maps” (Pergamon Press, New York, 1982).

    Google Scholar 

  35. S. C. Hansen and D. S. Phillips, Phil. Mag. A 47 (1983) 209.

    Google Scholar 

  36. A. J. Perry, J. Mater. Sci. 9 (1974) 1016.

    Google Scholar 

  37. R. C. Gifkins, J. Amer. Ceram. Soc. 51 (1968) 69.

    Google Scholar 

  38. W. D. Kingery, “Introduction to Ceramics”, 2nd edn (John Wiley and Sons, New York, 1976) p. 183.

    Google Scholar 

  39. A. S. Argon, I. W. Chen and C. W. Lau, “Creepfatigue-Environment Interactions” edited by R. M. Pelloux and N. S. Stoloff (AIME, New York, 1980) p. 46.

    Google Scholar 

  40. R. Raj, Met. Trans 6A (1975) 1499.

    Google Scholar 

  41. J. R. Weertman, Can. Met. Q. 18 (1979) 73.

    Google Scholar 

  42. R. Raj, J. Amer. Ceram. Soc. 63 (1982) C-46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Page, R.A., Lankford, J. & Spooner, S. Small-angle neutron scattering study of creep cavity nucleation and growth in sintered alumina. J Mater Sci 19, 3360–3374 (1984). https://doi.org/10.1007/BF00549828

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00549828

Keywords

Navigation