Skip to main content
Log in

Thermoluminescent mechanisms involving transition metal ion impurities and V-type centres in MgO crystals exposed to ultraviolet radiation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thermoluminescent (TL) mechanisms involving Fe, Cr, Mn and V ions in both divalent and trivalent valence states, and V-type centres were studied in MgO single crystals of varying impurity content after exposure to ultraviolet radiation. Using the ESR technique, it is shown that samples containing primarily divalent impurities show no V-type centres related to the TL mechanism, which is that of charge transfer between the impurities. V-type centres, when present, are seen to be more stable in purer samples than in less pure samples, resulting in a shift of the TL peaks to higher temperatures. The TL mechanism in this case includes charge transfer between V-type centres and the impurities. The supralinear behaviour of TL peak 1 is associated with the R-emission lines of Cr3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. Wertz, L. C. Hall, J. Hegelson, C. C. Chao and W. S. Dykoski, in “Interaction of Radiation with Solids”, edited by A. Bishay (Plenum Press, New York, 1967) p. 617.

    Google Scholar 

  2. K. H. Lee and J. H. Crawford, Jr, J. Lumin. 20 (1979) 9.

    Google Scholar 

  3. J. E. Wertz, J. W. Orton and P. Auzins, J. Appl. Phys. Suppl. 33 (1962) 322.

    Google Scholar 

  4. Y. Kirsh, N. Kristianpoller and R. Chen, Phil. Mag. 35 (1977) 653.

    Google Scholar 

  5. Y. Chen and W. A. Sibley, Phys. Rev. 154 (1967) 842.

    Google Scholar 

  6. A. Sathyamoorthy and J. M. Luthra, J. Mater Sci. 13 (1978) 2637.

    Google Scholar 

  7. N. Takeuchi, K. Inabe, J. Yamashita and S. Nakamura, Health Phys. 31 (1976) 519.

    Google Scholar 

  8. A. K. Dhar, L. A. DeWerd and T. G. Stoebe, Med Phys. 3 (1976) 415.

    Google Scholar 

  9. N. Takeuchi, K. Inabe and J. Yamashita, Phys. Chem. 259 (1978) 321.

    Google Scholar 

  10. W. M. Ziniker, J. K. Merrow and J. I. Mueller, J. Phys. Chem. Sol. 33 (1972) 1619.

    Google Scholar 

  11. C. S. Krishnan, PhD Thesis, University of Washington (1973).

  12. F. A. Modine, E. Sonder and R. A. Weeks, J. Appl. Phys. 48 (1977) 3514.

    Google Scholar 

  13. K. W. Blazey, J. Phys. Chem. Sol. 38 (1977) 671.

    Google Scholar 

  14. J. B. Lacy, M. M. Abraham, J. L. Boldu, Y. Chen, J. Narayan and H. T. Tohver, Phys. Rev. B 18 (1978) 4136.

    Google Scholar 

  15. J. E. Wertz, P. Auzins, J. H. E. Griffiths and J. W. Orton, Disc. Far. Soc. 26 (1958) 66.

    Google Scholar 

  16. R. W. Davidge, J. Mater. Sci. 2 (1967) 339.

    Google Scholar 

  17. E. Sonder and W. A. Sibley, in “Point Defects in Solids” Vol. 1, edited by J. H. Crawford and L. M. Slifkin (Plenum Press, New York, 1972).

    Google Scholar 

  18. Y. Chen, M. M. Abraham, L. C. Templeton and W. P. Unruh, Phys. Rev. B 11 (1975) 881.

    Google Scholar 

  19. M. M. Abraham, Y. Chen and W. P. Unruh, ibid 9 (1974) 1842.

    Google Scholar 

  20. L. A. Kappers, F. Dravnieks and J. E. Wertz, Sol. Stat. Commun. 10 (1972) 1265.

    Google Scholar 

  21. W. P. Unruh, Y. Chen and M. M. Abrahan, Phys. Rev. Lett. 30 (1973) 446.

    Google Scholar 

  22. L. A. Kappers, F. Dravnieks and J. E. Wertz, J. Phys. C: Sol. St. Phys. 7 (1974) 1387.

    Google Scholar 

  23. B. Henderson, J. E. Wertz, J. P. Hall and R. D. Dowsing, ibid. 4 (1971) 107.

    Google Scholar 

  24. J. E. Wertz and P. Auzins, Phys. Rev. 106 1957) 484.

    Google Scholar 

  25. A. M. Glass and T. M. Searle, J. Chem. Phys. 46 (1967) 2092.

    Google Scholar 

  26. B. Henderson and W. A. Sibley, ibid 55 (1971) 1276.

    Google Scholar 

  27. E. R. Vance and W. C. Mallard, Phys. Stat. Sol. (b) 91 (1979) K155.

    Google Scholar 

  28. R. L. Hansler and W. G. Segelken, J. Phys. Chem. Sol. 13 (1960) 124.

    Google Scholar 

  29. R. A. Weeks, E. Sonder, J. C. Pigg and K. F. Kelton, J. Phys. (France) 37 (1976) C7–411.

    Google Scholar 

  30. L. J. Challis, A. A. Ghazi and K. J. Maxwell, J. Phys. C: Sol. St. Phys. 12 (1979) 303.

    Google Scholar 

  31. W. A. Sibley, J. L. Kolopus and W. C. Mallard, Phys. Stat. Sol. 31 (1969) 223.

    Google Scholar 

  32. W. C. Las, R. J. Matthews and T. G. Stoebe, Nucl. Inst. Methods 175 (1980) 1.

    Google Scholar 

  33. R. T. Williams, J. W. Williams, T. J. Turner and K. H. Lee, Phys. Rev. B 20 (1979) 1687.

    Google Scholar 

  34. S. Datta, I. M. Boswarva and D. B. Holt, J. Phys. Chem. Solids 40 (1979) 567.

    Google Scholar 

  35. D. B. Holt, S. Datta and I. M. Boswarva, J. Phys. (France) 41 (1980) C6–522.

    Google Scholar 

  36. N. Takeuchi, K. Inabe and H. Nanto, Phys. Stat. Sol. (a) 33 (1976) K125.

    Google Scholar 

  37. W. C. Las and T. G. Stoebe, J. Mater. Sci. 16 (1981) 1191.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Las, W.C., Stoebe, T.G. Thermoluminescent mechanisms involving transition metal ion impurities and V-type centres in MgO crystals exposed to ultraviolet radiation. J Mater Sci 17, 2585–2593 (1982). https://doi.org/10.1007/BF00543891

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00543891

Keywords

Navigation