Skip to main content
Log in

Wirkung von cyclischem Adenosin-3′,5′-Monophosphat (3′,5′-AMP) und seinem Dibutyrylderivat (DBA) auf Lipolyse, Glykogenolyse und Corticosteronsynthese

Effects of cyclic adenosine-3′,5′-monphosphate (3′,5′-AMP) and its dibutyryl derivative (DBA) on lipolysis, glycogenolysis and synthesis of corticosterone

  • Published:
Naunyn-Schmiedebergs Archiv für Pharmakologie und experimentelle Pathologie Aims and scope Submit manuscript

Summary

1. In isolated fat pads of rats the dibutyryl derivative of cyclic 3′,5′-AMP (DBA) proved to be 100 times more active in promoting lipolysis than 3′,5′-AMP itself; hormones (ACTH, Norepinephrine) were about 10.000 times more active than DBA. Inhibition of phosphodiesterase by theophylline potentiated the lipolytic effect of DBA as well as that of the hormones.

2. In isolated adrenals of rats the stimulatory effect of DBA on corticosterone synthesis was approximately 100 times greater than that of 3′,5′-AMP, but 500 times less than that of ACTH. In contrast to lipolysis, the stimulatory effect of the nucleotides and ACTH on the adrenals was not enhanced by theophylline, but was rather inhibited by high doses of the xanthine derivative.

3. In unanesthetized rats the hyperglycemic action of intraperitoneally injected DBA was much greater than that of 3′,5′-AMP: In order to elevate blood glucose by 40 mg/100 ml, 1 μmole/kg of DBA but 30 μmoles/kg of 3′,5′-AMP were necessary. Pretreatment of the animals with theophylline did not potentiate this action of the nucleotides.—The level of plasma free fatty acids and glycerol was not elevated by DBA but was rather depressed. Only very high doses of DBA increased the level of plasma corticosterone.

The results are discussed in connection with the second messenger concept of Sutherland and coworkers.

Zusammenfassung

1. Am isolierten Fettgewebe von Ratten hatte das Dibutyrylderivat des cyclischen Adenosin-3′,5′-Monophosphat (DBA) eine etwa 100 mal stärkere lipolytische Wirkung als das nicht substituierte cyclische Adenosin-3′,5′-Monophosphat (3′,5′-AMP). Hormone (ACTH, Noradrenalin) waren an diesem Testobjekt 10000 mal wirksamer als DBA. Durch Hemmung der Phosphodiesterase mit Theophyllin ließ sich auch die Wirkung des DBA verstärken.

2. An isolierten Nebennieren von Ratten stimulierte DBA die Corticosteronsynthese etwa 100 mal stärker als 3′,5′-AMP; ACTH war aber 500 mal wirksamer als DBA. Durch Theophyllin ließ sich die Wirkung von ACTH, DBA bzw. 3′,5′-AMP nicht verstärken. Hohe Konzentrationen des Xanthinderivates hemmten die Corticosteronsynthese.

3. An Ratten war die hyperglykämische Wirkung des DBA wesentlich stärker als diejenige des 3′,5′-AMP: Für eine Erhöhung des Blutzuckerspiegels um 40 mg/100 ml benötigten wir von DBA weniger als 1 μmol/kg, von 3′,5′-AMP aber 30 μmol/kg. Diese Wirkung der Nucleotide ließ sich durch Theophyllin nicht verstärken. Der Fettsäuren- und Glyceringehalt des Plasmas wurde durch Injektion von DBA bzw. 3′,5′-AMP nicht erhöht, sondern erniedrigt. — Die Ergebnisse wurden im Zusammenhang mit dem “Second Messenger Concept” von Sutherland u. Mitarb. diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Ariëns, E. J., J. M. van Rossum, and A. M. Simonis: A theoretical basis of molecular pharmacology. Arzneimittel-Forsch. 6, 282–293 (1956).

    Google Scholar 

  • Aulich, A.: Quantitative Bestimmung der Wirksamkeit verschiedener Stimulatoren und Hemmstoffe im lipolytischen System. Inaugural-Dissertation, Frankfurt a. M. 1968.

    Google Scholar 

  • ——, and E. Westermann: Lipolytic effects of cyclic adenosine-3′,5′-monophosphate and its butyryl derivatives in vitro, and their inhibition by α- and β-adrenolytics. Life Sci. 6, 929–938 (1967).

    Google Scholar 

  • Bieck, P., K. Stock, and E. Westermann: Antilipolytic effect of N6, 2′-0-dibutyryl-3′,5′-adenosine monophosphate in vivo. Life Sci. 7, 1125–1134 (1968).

    Google Scholar 

  • ——, u. E. Westermann: Wirkung von cyclischem Adenosin-3′,5′-Monophosphat und seinem Dibutyrylderivat auf Corticoidsynthese und Glykogenolyse an der Ratte. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 257, 266 (1967).

    Google Scholar 

  • Blecher, M., N. S. Merlino, and J. T. Ro'ane: Control of the metabolism and lipolytic effects of cyclic 3′,5′-adenosine monophosphate in adipose tissue by insulin, methyl xanthines and nicotinic acid. J. biol. Chem. 243, 3973–3977 (1968).

    Google Scholar 

  • Butcher, R. W., R. J. Ho, H. C. Meng, and E. W. Sutherland: Adenosine 3′,5′-monophosphate in biological materials. The measurement of cyclic 3′5′-AMP in tissues and the role of the cyclic nucleotide in the lipolytic response of fat to epinephrine. J. biol. Chem. 240, 4515–4523 (1965).

    Google Scholar 

  • ——, and E. W. Sutherland: Adenosine 3′,5′-phosphate in biological materials. J. biol. Chem. 237, 1244–1250 (1962).

    Google Scholar 

  • Creange, J. E., and S. Roberts: Studies on the mechanism of action of cyclic 3′,5′-adenosine monophosphate on steroid hydroxylations in adrenal homogenates. Biochem. biophys. Res. Commun. 19, 73–78 (1965).

    Google Scholar 

  • Dole, V. P.: A relation between non-esterified fatty acids in plasma and the metabolism of glucose. J. clin. Invest. 35, 150–154 (1956).

    Google Scholar 

  • Drummond, G. J., and S. Perrot-Yee: Enzymatic hydrolysis of adenosine 3′,5′-phosphoric acid. J. biol. Chem. 236, 1126–1129 (1961).

    Google Scholar 

  • Eggstein, M., u. F. H. Kreutz: Eine neue Bestimmung der Neutralfette im Blutserum und Gewebe. Klin. Wschr. 44, 262–267 (1966).

    Google Scholar 

  • Ellis, S., and A. J. Eusebi: Dissociation of epinephrine-induced hyperkalemia and hyperglycemia by adrenergic blocking drugs and theophylline; role of cyclic 3′,5′-AMP. Fed. Proc. 24, 151 (1965).

    Google Scholar 

  • Evans, G.: The adrenal cortex and endogenous carbohydrate formation. Amer. J. Physiol. 114, 297–304 (1936).

    Google Scholar 

  • Fain, J. N.: Effect of dibutyryl-3′,5′-AMP, theophylline and norepinephrine on lipolytic action of growth hormone and glucocorticoid in white fat cells. Endocrinology 82, 825–830 (1968).

    Google Scholar 

  • Fassina, G.: Antagonistic action of metabolic inhibitors on dibutyryl cyclic 3′,5′-adenosine monophosphate-stimulated and coffeine-stimulated lipolysis in vitro. Life Sci. 6, 825–831 (1967).

    Google Scholar 

  • Ferguson, J. J., Jr.: Protein synthesis and adrenocorticotropic responsiveness. J. biol. Chem. 238, 2754–2759 (1963).

    Google Scholar 

  • Garren, L. D.: Studies on the possible role of protein synthesis in the regulation of steroidogenesis by ACTH. In: Protein and Polypeptide Hormones. M. Margoulies, Ed.; Part 1, pp. 189–192. Excerpta Medica Foundation, Amsterdam 1968.

    Google Scholar 

  • Grahame-Smith, D. G., R. W. Butcher, R. L. Ney, and E. W. Sutherland: Adenosine-3′,5′-monophosphate as the intracellular mediator of the action of adrenocorticotropic hormone on the adrenal cortex. J. biol. Chem. 242, 5535 to 5541 (1967).

    Google Scholar 

  • Guillemin, R., G. W. Clayton, H. S. Lipscomb, and J. D. Smith: Fluorometric measurement of rat plasma and adrenal corticosterone concentration; a note on technical details. J. Lab. clin. Med. 53, 830–832 (1959).

    Google Scholar 

  • Halkerston, J. D. K., M. Feinstein, and O. Hechter: An anomalous effect of theophylline on ACTH and adenosine 3′,5′-monophosphate stimulation. Proc. Soc. exp. Biol. (N. Y.) 122, 896 (1966).

    Google Scholar 

  • Hanahan, D. J., and J. N. Olley: Chemical nature of monophosphoinositides. J. biol. Chem. 231, 813–829 (1958).

    Google Scholar 

  • Haynes, R. C., Jr.: The activation of adrenal phosphorylase by the adrenocorticotropic hormone. J. biol. Chem. 233, 1220–1222 (1958).

    Google Scholar 

  • Ho, R.-J., B. Jeanrenaud, and A. E. Renold: Ouabain-sensitive fatty acid release from isolated fat cells. Experientia (Basel) 22, 86 (1966).

    Google Scholar 

  • Huggett, A. St. G., and D. A. Nixon: Enzymic determination of blood glucose. Biochem. J. 66, 12 P (1957).

  • Jungas, R. L., and E. G. Ball: Studies on the metabolism of adipose tissue. XII. The effects of insulin and epinephrine on free fatty acid and glycerol production in the presence and absence of glucose. Biochemistry 2, 383–388 (1963).

    Google Scholar 

  • Karaboyas, G. C., and S. B. Koritz: Identity of the site of action of 3′,5′-adenosine monophosphate and adrenocorticotropic hormone in corticosteroidgenesis in rat adrenal and beef adrenal cortex slices. Biochemistry 4, 462–468 (1965).

    Google Scholar 

  • Koritz, S. B.: Some observations on the stimulation in vitro of corticoid production by adenosine 3′,5′-monophosphate in rat adrenal. Biochim. biophys. Acta (Amst.) 60, 179–181 (1962).

    Google Scholar 

  • —— On the mechanism of action of adrenocorticotropin. In: Protein and Polypeptide Hormones, M. Margoulies, Ed.; Part 1, pp. 171–175. Excerpta Medica Foundation, Amsterdam 1968.

    Google Scholar 

  • Levine, R. A.: Cardiovascular and metabolic effects of adenosine-3′,5′-monophosphate in man. J. clin. Invest. 44, 1068–1073 (1965).

    Google Scholar 

  • —— Effects of exogenous adenosine 3′,5′-monophosphate in man. II. Glucose, nonesterified fatty acid and cortisol responses. Metabolism 17, 34–45 (1968).

    Google Scholar 

  • ——, and J. A. Vogel: Cardiovascular and metabolic effects of adenosine-3′,5′-monophosphate in vivo. Nature (Lond.) 207, 987–988 (1965).

    Google Scholar 

  • Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951).

    Google Scholar 

  • Michal, G.: Pers. Mitteilung (1968).

  • Northrop, G., and R. E. Parks: The effects of adrenergic blocking agents and theophylline on 3′,5′-AMP-induced hyperglycemia. J. Pharmacol. exp. Ther. 145, 87–91 (1964).

    Google Scholar 

  • Pfeiffer, E. F., W. E. Vaubel, K. Retienne, D. Berg u. H. Ditschuneit: ACTH-Bestimmung mittels Messung des Plasma-Corticosterons der mit Dexamethason hypophysenblockierten Ratte. Klin. Wschr. 38, 980–986 (1960).

    Google Scholar 

  • Posternak, Th., E. W. Sutherland, and W. F. Henion: Derivatives of cyclic 3′,5′-adenosine monophosphate. Biochim. biophys. Acta (Amst.) 65, 558–560 (1962).

    Google Scholar 

  • Riley, G. A., and R. C. Haynes, Jr.: The effect of adenosine 3′,5′-phosphate on phosphorylase activity in beef adrenal cortex. J. biol. Chem. 238, 1563–1570 (1963).

    Google Scholar 

  • Roberts, S., J. E. Creange, and P. L. Young: Stimulation of steroid transformations in adrenal mitochondria by cyclic 3′,5′-adenosine phosphate. Biochem. biophys. Res. Commun. 20, 446–451 (1965).

    Google Scholar 

  • Rudman, D., L. A. Garcia, S. J. Brown, M. F. Malkin, and W. Perl: Dose response curves for the adipokinetic action of aromatic amines and adrenocorticotropin upon the isolated adipose tissue of the hamster. J. Lipid Res. 5, 28–37 (1964).

    Google Scholar 

  • Saffran, M., and A. V. Schally: In vitro bioassay of corticotropin: Modification and statistical treatment. Endocrinology 56, 523 (1955).

    Google Scholar 

  • Stock, K., u. E. Westermann: Über die Bedeutung des Noradrenalingehaltes im Fettgewebe für die Mobilisierung unveresterter Fettsäuren. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 251, 465–487 (1965).

    Google Scholar 

  • —— —— Hemmung der Lipolyse durch α-und β-Sympathicolytica, Nicotinsäure und Prostaglandin E1. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 254, 334–354 (1966).

    Google Scholar 

  • —— —— Hemmung der lipolytischen Wirkung von cyclischem Adenosin-3′,5′-Monophosphat und seinem N6,2′-0-dibutyryl-Derivat sowie von Theophyllin durch α- und β-Sympathicolytica. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 257, 339 (1967).

    Google Scholar 

  • —— —— Interactions between ACTH, adrenolytic drugs and prostaglandin E1 in the lipolytic system. In: Protein and Polypeptide Hormones. M. Marguolies, Ed., Part 1, pp. 159–161. Amsterdam: Excerpta Medica Foundation 1968.

    Google Scholar 

  • Strauch, L.: Ultramikro-Methode zur Bestimmung des Stickstoffs in biologischem Material. Z. klin. Chem. 3, 165–167 (1965).

    Google Scholar 

  • Sutherland, E. W., and G. A. Robison: The role of cyclic 3′,5′-AMP in response to catecholamines and other hormones. Pharmacol. Rev. 18, 145–162 (1966).

    Google Scholar 

  • —— —— and R. W. Butcher: Some aspects of the biological role of adenosine 3′,5′-monophosphate (cyclic AMP). Circulation 37, 279–306 (1968).

    Google Scholar 

  • Turtle, J. R., G. K. Littleton, and D. M. Kipnis: Stimulation of insulin secretion by theophylline. Nature (Lond.) 213, 727 (1967).

    Google Scholar 

  • Weiss, B., J. I. Davies, and B. B. Brodie: Evidence for a role of adenosine 3′,5′-monophosphate in adipose tissue lipolysis. Biochem. Pharmacol. 15, 1553–1561 (1966).

    Google Scholar 

  • Westermann, E.: Mechanismus und pharmakologische Beeinflussung der endokrinen Lipolyse. 12. Symposion der Deutschen Ges. f. Endokrinologie, S. 154–173. Berlin-Heidelberg-New York: Springer 1967.

    Google Scholar 

  • --, and K. Stock: The autonomic nervous system and energy metabolism. J. Neurovisc. Relat., Suppl. IX (in press) (1969).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Herrn Prof. Dr. L. Lendle zum 70. Geburtstag gewidmet.

Über einen Teil der Ergebnisse wurde auf der 8. Frühjahrstagung der Deutschen Pharmakologischen Gesellschaft (Stock u. Westermann, 1967; Bieck u. Westermann, 1967) sowie in einer kurzen Mitteilung (Bleck et al., 1968) berichtet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bieck, P., Stock, K. & Westermann, E. Wirkung von cyclischem Adenosin-3′,5′-Monophosphat (3′,5′-AMP) und seinem Dibutyrylderivat (DBA) auf Lipolyse, Glykogenolyse und Corticosteronsynthese. Naunyn-Schmiedebergs Arch. Pharmak. u. Exp. Path. 263, 387–405 (1969). https://doi.org/10.1007/BF00538773

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00538773

Key-Words

Schlüsselwörter

Navigation