Skip to main content
Log in

Transformation of tetralin by whole cells of Pseudomonas stutzeri AS39

  • Biotechnology
  • Published:
European journal of applied microbiology and biotechnology Aims and scope Submit manuscript

Summary

A bacterium capable of growing on tetralin (1,2,3,4-tetrahydronaphthalene) as the sole source of carbon and energy has been isolated from soil of a coal dump. It has been identified as Pseudomonas stutzeri. The organism converts tetralin to 1-tetralol and 1-tetralone. The generation time is 50 h with tetralin, and 1.2 h with salicylate, respectively, as carbon source. Under conditions where the cells grow on tetralin the highest yield of 1-tetralol and 1-tetralone so far obtained is about 3% of the tetralin-input. The oxidation of an alicyclic ring structure by an arene-degrading bacterium is being discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azoulay E, Heydeman MT (1963) Extraction and properties of alcohol dehydrogenase from Pseudomonas aeruginosa. Biochim Biophys Acta 73:1–6

    Google Scholar 

  • Barnsley EA (1975) The induction of the enzymes of naphthalene metabolism in Pseudomonads by salicylate and 2-amino-benzoate. J Gen Microbiol 88:193–196

    Google Scholar 

  • Chapman PJ (1979) Degradation mechanisms. In: Bourquin AW, Pritchard PH (eds) Microbial degradation of pollutants in marine environments. US Environmental Protection Agency, Gulf Breeze, USA, pp 28–66

    Google Scholar 

  • Christova K, Dantschev D (1978) Derivatives of 2-amino-1,2,3,4-tetrahydronaphthalene. V: Synthesis of trans-2-amino-3,5,8-trihydroxy-1,2,3,4-tetrahydronaphthalene and N-substituted derivatives. Arch Pharmazie 311:948–953

    Google Scholar 

  • Collin G (1979) Steinkohlenteer — Kohlenwasserstoffe. Zusammenhänge zwischen Eigenschaften und Verwendung. Erdöl und Kohle-Erdgas-Petrochemie 32:512–519

    Google Scholar 

  • Dorn E, Hellwig M, Reineke W, Knackmuss H-J (1974) Isolation and characterization of a 3-chlorobenzoate degrading Pseudomonas. Arch Microbiol 99:61–70

    Google Scholar 

  • Drozd JW (1980) Whole cell transformations. See ref. Harrison DEF, Higgins IJ, Watkinson R (eds), pp 75–83

  • Ganapathy K, Khanchandami KS, Bhattacharyya PK (1966) Microbiological transformations of terpenes. Part VII. Further studies on the mechanism of fungal oxygenation reaction with the aid of model substrates. Indian J Biochem 3:66–70

    Google Scholar 

  • Harrison DEF, Higgins IJ, Watkinson R (eds) (1980) Hydrocarbons in Biotechnology. Verlag Heyden & Son, London, pp 201

    Google Scholar 

  • Hopper DJ (1978) Microbial degradation of aromatic hydrocarbons. See ref. Watkinson RJ (ed), pp 85–112

  • Hosler P, Eltz RW (1969) Microbial conversion of p-xylene in stirred fermenters. In: Perlman D (ed) Fermentation advances, pp 789–805

  • Ivanov IC, Dantchev DK, Sulay PB (1978) Derivate des 2-Amino-1,2,3,4-tetrahydronaphthalins. IV. Synthese und Konfiguration der Diastereomeren 2,3,4a,5,10,10a-Hexahydro-4-naphth-[2,3,-b]-1,4-oxazine (“Naphthalanmorpholine”). Chem Ber 111:1164–1170

    Google Scholar 

  • Jamison VW, Raymond RL, Hudson JO (1970) Hydrocarbon cooxidation by Nocardia corallina strain V-49. In: Amer Inst of Biol Sciences (ed). Developments in Industrial Microbiology, Garmond-Pridemark Press, Baltimore, pp 99–105

    Google Scholar 

  • Jeffrey AM, Yeh HIC, Jerina DM, Patel TR, Davey JF, Gibson DT (1975) Initial reactions in the oxidation of naphthalene by Pseudomonas putida. Biochemistry 14:575–584

    Google Scholar 

  • Ladd JN (1956) The oxidation of hydrocarbons by soil bacteria. I. Morphological and biochemical properties of a soil diphtheroid utilizing hydrocarbons. Aust J Biol Sci 9:92–104

    Google Scholar 

  • McKenna EJ, Coon MJ (1970) Enzymatic ω-oxidation. IV. Purification and properties of the ω-hydroxylase of Pseudomonas oleovorans. J Biol Chem 245:3882–3889

    Google Scholar 

  • Perry JJ (1979) Microbial cooxidations involving hydrocarbons. Microbiol Rev 43:59–72

    Google Scholar 

  • Ratledge C (1978) Degradation of aliphatic hydrocarbons. See ref. Watkinson RJ (ed), pp 1–46

  • Schlegel HG (1974) Allgemeine Mikrobiologie. Thieme Verlag, Stuttgart, 3. Auflage, S 174

    Google Scholar 

  • Shamsuzzaman KM, Barnsley EA (1974) The regulation of naphthalene oxygenase in Pseudomonads. J Gen Microbiol 83:165–170

    Google Scholar 

  • Trudgill PW (1978) Microbial degradation of alicyclic hydrocarbons. See ref. Watkinson RJ (ed), pp 47–84

  • Tsuchii A, Suzuki T, Takahara Y (1977) Microbial degradation of styrene oligomer. Agric Biol Chem 41:2417–2421

    Google Scholar 

  • Watkinson RJ (ed) (1978) Developments in biodegradation of hydrocarbons-I. Shell Research Ltd, Shell Biosciences Laboratory, Sittingbourne, Kent, p 232

    Google Scholar 

  • Welch WM, Harbert ChA, Sarges R, Stratten WP, Weissman A (1977) Analgesic and tranquilizing activity of 5,8-disubstituted 1-tetralone mannich bases. J Med Chem 20:699–705

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schreiber, A.F., Winkler, U.K. Transformation of tetralin by whole cells of Pseudomonas stutzeri AS39. European J. Appl. Microbiol. Biotechnol. 18, 6–10 (1983). https://doi.org/10.1007/BF00508122

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00508122

Keywords

Navigation