Skip to main content
Log in

Influence of therapeutic and toxic doses of neuroleptics and antidepressants on energy metabolism of the isolated perfused rat brain

  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Summary

The isolated perfused rat brain was used for a comparative study of the effects of promazine, imipramine, monodesmethyl promazine and desipramine on cerebral energy metabolism. After perfusion for 30 min or 1 h the brain levels of the following substrates and metabolites were estimated: P-creatine, creatine, ATP, ADP, AMP, glycogen, glucose, glucose-6-P, fructose diphosphate, dihydroxyacetone-P, pyruvate, lactate, α-ketoglutarate, and ammonia. Drug concentrations of 5·10−6 M and 10−5 M in the perfusion medium caused a significant decrease of glucose-6-P alone. When the drug concentration was raised to a toxic range (10−4 M), reflected in the EEG by the pattern of secondary discharges, an accumulation of P-creatine and glucose and a decrease of glycogen, glucose-6-P and ammonia occurred; the lactate/pyruvate ratios remained unchanged. As there were no qualitative differences between the effects of the investigated neuroleptics and antidepressants on cerebral metabolism, these effects might be unspecific and not correlated with the pharmacological action of the drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akera, T., Brody, T. M.: Inhibition of brain sodium- and potassium-stimulated adenosine triphosphatase activity by chlorpromazine free radical. Molec. Pharmacol. 4, 600–612 (1968)

    Google Scholar 

  • Andjus, R. K., Suhara, K., Sloviter, H. A.: An isolated, perfused rat brain preparation, its spontaneous and stimulated activity. J. appl. Physiol. 22, 1033–1039 (1967)

    Google Scholar 

  • Berger, M.: Metabolic reactivity of brain and liver mitochondria towards chlorpromazine. J. Neurochem. 2, 30–36 (1957)

    Google Scholar 

  • Bergmeyer, H. U.: Methoden der enzymatischen Analyse, 2. Aufl. Weinheim: Verlag Chemie 1970

    Google Scholar 

  • Bernsohn, J., Namajuska, I., Cochrane, L. S. G.: The effect of chlorpromazine on respiration and glycolysis in rat brain. Arch. Biochem. Biophys. 62, 274–283 (1956)

    Google Scholar 

  • Brunner, E. A., Passonneau, J. V., Molstad, C.: The effect of volatile anaesthetics on levels of metabolites and on metabolic rate in brain. J. Neurochem. 18, 2301–2316 (1971)

    Google Scholar 

  • Carver, M. J.: Differential effects of phenothiazines on hexose phosphate dehydrogenases. Biochem. Pharmacol. 12, 19–24 (1963)

    Google Scholar 

  • Chowdhury, A. K., Skinner, A., Spector, R. G., Yap, S.-L.: The effect of chlorpromazine on cerebral glucose, ATP, ADP, AMP and ATPase in the mouse. Brit. J. Pharmacol. 34, 70–75 (1968)

    Google Scholar 

  • Chowdhury, A. K., Spector, R. G.: The influence of psychotropic drugs and ambient temperature on glycogen and reducing substances in mouse brain and liver. Biochem. Pharmacol. 18, 1248–1251 (1969)

    Google Scholar 

  • Curry, S. H.: The determination and possible significance of plasma levels of chlorpromazine in psychiatric patients. Aggressologie 9, 115–121 (1968)

    Google Scholar 

  • Dawkins, M. J. R., Judah, J. D., Rees, K. R.: The effect of chlorpromazine on the respiratory chain. Biochem. J. 72, 204–209 (1959)

    Google Scholar 

  • Dempsey, E. W., Morison, R. S.: Some afferent diencephalic pathways related to cortical potentials in the cat. Amer. J. Physiol. 131, 718–731 (1941)

    Google Scholar 

  • Estler, C.-J.: Glykogengehalt des Gehirns und Körpertemperatur weißer Mäuse unter dem Einfluß einiger zentral dämpfender und erregender Pharmaka. Med. exp. (Basel) 4, 209–213 (1961)

    Google Scholar 

  • Fleck, W., Krieglstein, J., Urban, W.: Zwei Apparaturen zur Perfusion des isolierten Rattenhirns. Arzneimittel-Forsch. 22, 1225–1230 (1972)

    Google Scholar 

  • Fleming, M. C., LaCourt, S.: The comparative effect of γ-hydroxybutyrate and phenobarbital on brain energy metabolism. Biochem. Pharmacol. 14, 1905–1907 (1965)

    Google Scholar 

  • Gey, K. F., Rutishauser, M., Pletscher, A.: Suppression of glycolysis in rat brain in vivo by chlorpromazine, reserpine, and phenobarbital. Biochem. Pharmacol. 14, 507–514 (1965)

    Google Scholar 

  • Glasser, H., Krieglstein, J.: Die Eiweißbindung einiger Psychopharmaka mit tricyclischem Ringsystem in Abhängigkeit von ihrer chemischen Konstitution. Naunyn-Schmiedebergs Arch. Pharmak. 265, 321–334 (1970)

    Google Scholar 

  • Granholm, L., Kaasik, A. E., Nilsson, L., Siesjö, B. K.: The lactate/pyruvate ratios of cerebrospinal fluid of rats and cats related to the lactate/pyruvate, the ATP/ADP, and the phosphocreatine/creatine ratios of brain tissue. Acta physiol. scand. 74, 398–409 (1968)

    Google Scholar 

  • Grüner, J., Krieglstein, J., Rieger, H.: Comparison of the effects of chloral hydrate and trichloroethanol on the EEG of the isolated perfused rat brain. Naunyn-Schmiedeberg's Arch. Pharmacol. 277, 333–348 (1973)

    Google Scholar 

  • Hackenberg, H., Krieglstein, J.: Comparative study on the inhibition of Na+, K+-activated ATPase activity of chlorpromazine, promazine, imipramine, and their monodesmethyl metabolites. Naunyn-Schmiedeberg's Arch. Pharmacol. 274, 64–73 (1972)

    Google Scholar 

  • Huang, C. L., Ruskin, B. H.: Determination of serum chlorpromazine metabolites in psychotic patients. J. nerv. ment. Dis. 139, 381–386 (1964)

    Google Scholar 

  • Hutchins, D. A., Rogers, K. J.: Physiological and drug-induced changes in the glycogen content of mouse brain. Brit. J. Pharmacol. 39, 9–25 (1970)

    Google Scholar 

  • Iriye, T. T., Simmonds, F. A.: Effect of chlorpromazine on rat brain phosphorylase. Int. J. Neuro-pharmacol. 6, 341–357 (1967)

    Google Scholar 

  • Iriye, T. T., Simmonds, F. A.: Effect of tranquilizers and antidepressants on glycogen phosphorylase of rat brain. Biochem. Pharmacol. 20, 1889–1900 (1971)

    Google Scholar 

  • Jähnchen, E., Krieglstein, J.: Die Aufnahme von Promazin, chlorpromazin und deren Desmethylmetaboliten in das isoliert perfundierte Rattenhirn. Naunyn-Schmiedebergs Arch. Pharmak. 268, 300–309 (1971)

    Google Scholar 

  • Kanig, K.: Der Einfluß zentral wirksamer Substanzen auf den Nucleotid-Stoffwechsel des Gehirns. Habil.-Schrift, Med. Fakultät, Freie Universität Berlin 1963

  • Kaul, C. L., Lewis, J. J., Livingstone, S. D.: Influence of chlorpromazine on the levels of adenine nucleotides in the rat brain and hypothalamus in vivo. Biochem. Pharmacol. 14, 165–175 (1965)

    Google Scholar 

  • Kraus, P., Šimáně, Z.: The influence of perathiepine and chlorpromazine on some enzyme reactions in rat brain preparations. Experientia (Basel) 23, 90–91 (1967)

    Google Scholar 

  • Krieglstein, G., Krieglstein, J., Stock, R.: Suitability of the isolated perfused rat brain for studying effects on cerebral metabolism. Naunyn-Schmiedeberg's Arch. Pharmacol. 275, 124–134 (1972a)

    Google Scholar 

  • Krieglstein, G., Krieglstein, J., Urban, W.: Long survival time of an isolated perfused rat brain. J. Neurochem. 19, 885–886 (1972b)

    Google Scholar 

  • Krieglstein, J., Kuschinsky, G.: Quantitative Bestimmung der Eiweißbindung von Pharmaka durch Gelfiltration. Arzneimittel-Forsch. 18, 287–289 (1968)

    Google Scholar 

  • Krieglstein, J., Stock, R.: Comparative study of the effects of chloral hydrate and trichloroethanol on cerebral metabolism. Naunyn-Schmiedeberg's Arch. Pharmacol. 277, 323–332 (1973)

    Google Scholar 

  • Lewis, J. J., van Petten, G. R.: The effect of antidepressive drugs and some related compounds on the levels of adenine nucleotides, inorganic phosphate and phosphocreatine in the rat brain. Brit. J. Pharmacol. 20, 462–470 (1963)

    Google Scholar 

  • March, J. E., Donato, D., Turano, P., Turner, W. J.: Interpatient variation and significance of plasma levels of chloropromazine in psychotic patients. J. Med. 3, 146–162 (1972)

    Google Scholar 

  • Masurat, T., Greenberg, S. M., Rice, E. G., Herndon, J. F., van Loon, E. J.: The action of chlorpromazine on yeast hexokinase. Biochem. Pharmacol. 5, 20–26 (1960)

    Google Scholar 

  • Máthé, V., Kassay, G.: Die Wirkung von Psychopharmaka auf den energetischen Stoffwechsel des Hirngewebes. Arzneimittel-Forsch. 19, 419–421 (1969)

    Google Scholar 

  • Máthé, V., Kassay, G., Hunkár, K.: Die Wirkung des Chlorpromazins auf den Kohlenhydratstoffwechsel des Rattengehirns. Psychopharmacologia (Berl.) 2, 334–341 (1961)

    Google Scholar 

  • Mayman, C. I., Gatfield, P. D., Breckenridge, B. McL.: The glucose content of brain in anaesthesia. J. Neurochem. 11, 483–487 (1964)

    Google Scholar 

  • Minard, F. N., Davis, R. V.: Effect of chlorpromazine, ether, and phenobarbital on the active-phosphate level of rat brain: an improved extraction technique for acid-soluble phosphates. Nature (Lond.) 193, 277–278 (1962)

    Google Scholar 

  • Pecháň, I.: Effects of psychopharmacological agents on brain metabolism. —II. Influence of imipramine and prothiadene on the free nucleotide level of rat brain. Biochem. Pharmacol. 14, 1651–1655 (1965)

    Google Scholar 

  • Rutishauser, M.: Beeinflussung des Kohlenhydratstoffwechsels des Rattenhirns durch Psychopharmaka mit sedativer Wirkung. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 245, 396–413 (1963)

    Google Scholar 

  • Schmahl, F. W., Betz, E., Talke, H., Hohorst, H. J.: Energiereiche Phosphate und Metabolite des Energiestoffwechsels in der Großhirnrinde der Katze. Biochem. Z. 342, 518–531 (1965)

    Google Scholar 

  • Stock, R., Krieglstein, J., Rieger, H.: The effects of imipramine and promazine on energy metabolism and EEG of the isolated perfused rat brain. Naunyn-Schmiedeberg's Arch. Pharmacol., Suppl. 277 R 77 (1973)

    Google Scholar 

  • Turano, P., March, J. E., Turner, W. J., Merlis, S.: Qualitative and quantitative report on chlorpromazine and metabolites in plasma, erythrocytes and erythrocyte washings from chronically medicated schizophrenic patients. J. Med. 3, 109–120 (1972)

    Google Scholar 

  • Wilson, W. S.: The effects of phenobarbitone, leptazol, dexamphetamine, iproniazid, imipramine, LSD, chlorpromazine, reserpine and hydroxyzine on the in vivo levels of adenine nucleotides and phosphocreatine in the rat brain. Brit. J. Pharmacol. 36, 448–457 (1969)

    Google Scholar 

  • Wollemann, M., Keleti, T.: Über den Mechanismus der Dehydrogenase-Aktivitätshemmung der Phenothiazine. Arzneimittel-Forsch. 12, 360–363 (1962)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krieglstein, J., Stock, R. & Rieger, H. Influence of therapeutic and toxic doses of neuroleptics and antidepressants on energy metabolism of the isolated perfused rat brain. Naunyn-Schmiedeberg's Arch. Pharmacol. 279, 243–254 (1973). https://doi.org/10.1007/BF00500604

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00500604

Key words

Navigation