Skip to main content
Log in

Historical effective size and the level of genetic diversity in Drosophila melanogaster and Drosophila pseudoobscura

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

We report the results of a sequential gel electrophoretic study of protein variation in Drosophila melanogaster and its comparison with D. pseudoobscura. The number of alleles and mean heterozygosity were lower in D. melanogaster than in D. pseudoobscura. On the other hand, geographical populations of Drosophila melanogaster have been shown to be much more differentiated than those of D. pseudoobscura. The results suggest that in D. melanogaster low-frequency alleles have been lost during the colonization process and that major alleles have become differentiated among populations. Population bottlenecks, due to various causes, appear to have played a significant role in the shaping of genetic variation in natural populations of many species. It is proposed that a comparison of genetic variation at homologous gene loci between related species can bring out effects of historical bottlenecks and provide an alternative approach for analyzing causes of genetic variation in natural populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avise, J. C., and Selander, R. K. (1972). Evolutionary genetics of cave dwelling fishes of the genus Astyanax. Evolution 261.

    Google Scholar 

  • Barker, J. S. F., and Starmer, W. T. (1982). Ecological Genetics and Evolution Academic Press, New York.

    Google Scholar 

  • Beckenbach, A. T., and Prakash, S. (1977). Examination of allelic variation at the hexokinase loci of D. pseudoobscura and D. persimilis by different methods. Genetics 87743.

    Google Scholar 

  • Berlocher, S. H. (1984). Genetic changes coinciding with the colonization of California by the walnut husk fly, Rhagoletis completa. Evolution 33906.

    Google Scholar 

  • Bernstein, S. C., Throckmorton, L. H., and Hubby, J. L. (1973). Still more genetic variability in natural populations. Proc. Natl. Acad. Sci. USA 703928.

    Google Scholar 

  • Bonhomme, F., and Selander, R. K. (1978). The extent of allelic diversity underlying electrophoretic protein variation in the house mouse. In Morse, H. C. (ed.), Origins of Inbred Mice Academic Press, New York, pp. 569–589.

    Google Scholar 

  • Bonnell, M. L., and Selander, R. K. (1974). Elephant seals: Genetic variation and near extinction. Science 184908.

    Google Scholar 

  • Bryant, E. H., VanDik, H., and VanDelden, W. (1981). Genetic variability of the face fly, Musca autumnalis de Geer, in relation to a population bottleneck. Evolution 35872.

    Google Scholar 

  • Buchanan, B. A., and Johnson, D. L. E. (1983). Hidden electrophoretic variation at the Xdh locus in a natural population of D. melanogaster. Genetics 104301.

    Google Scholar 

  • Cochrane, B. J., and Richmond, R. C. (1979). Studies of esterase-6 in Drosophila melanogaster. II. The genetics and frequency distributions of naturally occurring variants studied by electrophoretic and heat stability criteria. Genetics 93461.

    Google Scholar 

  • Coyne, J. A. (1976). Lack of genic similarity between two sibling species of Drosophila as revealed by varied techniques. Genetics 84593.

    Google Scholar 

  • Coyne, J. A. (1982). Gel electrophoresis and cryptic protein variation. In Rattazzi, M. C., Scandalios, J. C., and Watt, G. S. (eds.), Isozyme: Current Topics in Biological and Medical Research Alan R. Liss, New York.

    Google Scholar 

  • Coyne, J. A. (1984). Correlation between heterozygosity and rate of chromosome evolution in animals. Am. Nat. 123725.

    Google Scholar 

  • Coyne, J. A., and Felton, A. A. (1977). Genetic heterogeneity at two alcohol dehydrogenase loci in D. pseudoobscura and D. persimilis. Genetics 87285.

    Google Scholar 

  • Coyne, J. A., Eanes, W. F., Ramshaw, J. A. M., and Koehn, R. K. (1979). Electrophoretic heterogeneity of α-glycerophosphate dehydrogenase among many species of Drosophila. Syst. Zool. 28164.

    Google Scholar 

  • Dobzhansky, Th., and Epling, C. (1944). Contribution to the Genetics, Taxonomy and Ecology of Drosophila pseudoobscura and Its Relatives. Carnegie Inst. Wash. Publ., Washington, D.C.

    Google Scholar 

  • Dykhuizen, D. E., and Hartl, D. L. (1983). Functional effects of PGI allozymes in E. coli. Genetics 1051.

    Google Scholar 

  • Eanes, W. F. (1983). Genetic localization and sequential electrophoresis of glucose-6-phosphate dehydrogenase in D. melanogaster. Biochem. Genet. 21703.

    Google Scholar 

  • Eanes, W. F. (1984). Viability interactions, in vivo activity and the G6-PD polymorphism in D. melanogaster. Genetics 10695.

    Google Scholar 

  • Ehrlich, P. R., Murphy, D. D., Singer, M. C., Sherwood, C. B., White, R. R., and Brown, I. L. (1980). Extinction, reduction, stability and increase: The responses of checkerspot butterfly populations to the California drought. Oecologia 46101.

    Google Scholar 

  • Fletcher, T. S., Ayala, F. J., Thatcher, D. R., and Chambers, G. K. (1978). Structural analysis of the ADHs electromorph of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 755609.

    Google Scholar 

  • Graur, D. (1983). Genic diversity in Hymenopetra. Evolution 39190.

    Google Scholar 

  • Haigh, J., and Maynard Smith, J. (1972). Population size and protein variation in man. Genet. Res. 1973.

    Google Scholar 

  • Harris, H., and Hopkinson, D. A. (1976). Handbook of Enzyme Electrophoresis in Human Genetics North-Holland, Amsterdam.

    Google Scholar 

  • Hartl, D. L., and Dykhuizen, D. E. (1981). Potential for selection among neutral allozymes of 6-phosphogluconate dehydrogenase in E. coli. Proc. Natl. Acad. Sci. USA 786344.

    Google Scholar 

  • Hickey, D. A. (1977). Selection for amylase allozymes in D. melanogaster. Evolution 31800.

    Google Scholar 

  • Hilbish, T. J., and Koehn, R. K. (1985). The physiological basis of natural selection at the LAP locus. Evolution 39(6):1302.

    Google Scholar 

  • Huettel, M., Fuerst, P. A., Maruyama, T., and Chakraborty, R. (1980). Genetic effects of multiple bottlenecks in the Mediterranean fruit fly (Ceratitis capitata). Genetics 94 (Suppl.):s47.

    Google Scholar 

  • Johnson, G. B. (1977). Characterization of electrophoretically cryptic variation in the Alpine butterfly, colias meadii. Biochem. Genet. 15655.

    Google Scholar 

  • Keith, T. P. (1983). Frequency distribution of esterase-5 alleles in two populations of D. pseudoobscura. Genetics 105135.

    Google Scholar 

  • Kreitman, M. (1980). Assessment of variability within electromorphs of alcohol dehydrogenase in D. melanogaster. Genetics 95467.

    Google Scholar 

  • Loukas, M., Vergini, Y., and Krimbas, C. B. (1981). The genetics of Drosophila subobscura populations. XVII. Further genic heterogeneity within electromorphs by urea denaturation and the effect of the increased genic variability on linkage diequilibrium studies. Genetics 97429.

    Google Scholar 

  • McDonald, J. F., Anderson, S. M., and Santos, M. (1980). Biochemical differences between products of the Adh locus in Drosophila. Genetics 951013.

    Google Scholar 

  • Morton, R. A., and Singh, R. S. (1985). Biochemical properties, homology, and genetic variation of Drosophila “nonspecific” esterases. Biochem. Genet. 23959.

    Google Scholar 

  • Motro, U., and Thompson, G. (1982). On heterozygosity and effective size of populations subject to size change. Evolution 361059.

    Google Scholar 

  • Muruyama, T., and Fuerst, P. A. (1985a). Population bottlenecks and nonequilibrium models in population genetics. II. Number of alleles in a small population that was formed by a recent bottleneck. Genetics 111675.

    Google Scholar 

  • Muruyama, T., and Fuerst, P. A. (1985b). Population bottlenecks and nonequilibrium models in population genetics. III. Genetic homozygosity in populations which experience periodic bottlenecks. Genetics 111691.

    Google Scholar 

  • Nei, M., Muruyama, T., and Chakraborty, R. (1975). The bottleneck effect and genetic variability in populations. Evolution 291.

    Google Scholar 

  • Nevo, E., Beiles, A., and Ben-Shlomo, R. (1984). The evolutionary significance of genetic diversity: Ecological, demographic and life history correlates. Lecture notes Biomath. 5313.

    Google Scholar 

  • Parsons, P. A. (1983). The Evolutionary Biology of Colonizing Species Cambridge University Press, Cambridge.

    Google Scholar 

  • Prakash, S. (1973). Patterns of gene variation in central and marginal populations in D. robusta. Genetics 75347.

    Google Scholar 

  • Prakash, S., Lewontin, R. C., and Hubby, J. L. (1969). A molecular approach to the study of genic heterozygosity in natural populations. IV. Patterns of genic variation in central, marginal and isolated populations of D. pseudoobscura. Genetics 61841.

    Google Scholar 

  • Richmond, R. C., Gilbert, D. G., Sheehan, K. B., Gromko, M. H., and Butterworth, F. M. (1980). Esterase-6 and reproduction in D. melanogaster. Science 2971483.

    Google Scholar 

  • Sampsell, B. (1977). Isolation and genetic characterization of alcohol dehydrogenase thermostability variants occurring in natural populations of Drosophila melanogaster. Biochem. Genet. 15971.

    Google Scholar 

  • Schwaegerle, K. E., and Schaal, B. A. (1979). Genetic variability and founder effect in the pitcher plant, Sarracenia purpurea. L. Evolution 331210.

    Google Scholar 

  • Singh, R. S. (1979). Genetic heterogeneity within electrophoretic alleles and the patterns of variation among loci in D. pseudoobscura. Genetics 93997.

    Google Scholar 

  • Singh, R. S., and Rhomberg, L. R. (1987a). A comprehensive study of genic variation in natural populations of D. melanogaster. I. Estimates of gene flow from rare alleles. Genetics (in press).

  • Singh, R. S., and Rhomberg, L. R. (1987b). A comprehensive study of genic variation in natural populations of D. melanogaster. II. Estimates of heterozygosity and patterns of geographic differentiation. Genetics (in press).

  • Singh, R. S., Hubby, J. L., and Throckmorton, L. H. (1975). The study of genic variation by electrophoretic and heat denaturation techniques at the octanol dehydrogenase locus in members of the Drosophila virilis group. Genetic 80637.

    Google Scholar 

  • Singh R. S., Lewontin, R. C., and Felton, A. A. (1976). Genic heterogeneity within electrophoretic alleles of xanthine dehydrogenase in D. pseudoobscura. Genetics 84609.

    Google Scholar 

  • Slaughter, C. A., Coseo, M. C., Cancro, M. P., and Harris, H. (1981). Detection of enzyme polymorphism by using monoclonal antibodies Proc. Natl. Acad. Sci. USA 781124.

    Google Scholar 

  • Smith, I. (1976). Chromatographic and Electrophoretic Techniques, Vol. II. Zone Electrophoresis Heineman, London.

    Google Scholar 

  • Soule, M. E. (1976). Allozyme variation—its determinants in space and time. In Ayala, F. J. (ed.), Molecular Evolution Sinauer Associates, Sundarland, Mass., pp. 60–77.

    Google Scholar 

  • Taylor, C. E., and Gorman, G. C. (1975). Population genetics of a “colonizing” lizard: Natural selection of allozyme morphs in Anolis grahami. Heredity 35241.

    Google Scholar 

  • Trippa, G., Loverre, A., and Catamo, A. (1976). Thermostability studies for investigating non-electrophoretic polymorphic alleles in Drosophila melanogaster. Nature 26042.

    Google Scholar 

  • Webster, T. P., Selander, R. K., and Yang, S. Y. (1972). Genetic variability and similarity in the Anolis lizards of Bimini. Evolution 26523.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We thank the Natural Science and Engineering Research Council of Canada for financial support (Grant A0235 to R.S.S.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choudhary, M., Singh, R.S. Historical effective size and the level of genetic diversity in Drosophila melanogaster and Drosophila pseudoobscura . Biochem Genet 25, 41–51 (1987). https://doi.org/10.1007/BF00498950

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00498950

Key words

Navigation