Skip to main content
Log in

Redox reactions in transition metal oxide gels

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Transition metal ions are known to exhibit several oxidation states so that redox reactions can take place during the sol-gel synthesis of the corresponding oxides. The reduction of molecular precursors increases the size of the metal cation, favoring coordination expansion and the formation of condensed species. Electron delocalization through the oxide network is responsible for the electrical, optical, and electrochemical properties of transition metal oxide gels. Moreover the large surface/volume ratio — due to the small size of the solid particles — leads to a whole range of ion and electron exchange reactions at the oxide/water interface of transition metal oxide colloids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.J. Brinker and G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, 1990).

    Google Scholar 

  2. L.C. Klein, Sol-Gel Technology (Noyes, Park Ridge, 1988).

    Google Scholar 

  3. J. Livage, M. Henry, and C. Sanchez, Progress in Solid State Chemistry 18, 259 (1988).

    Google Scholar 

  4. C.F. Baes and R.E. Mesmer, Hydrolysis of Cations (Wiley, New York, 1976).

    Google Scholar 

  5. M. Henry, J.P. Jolivet, and J. Livage, Structure and Bonding 77, 153 (1992).

    Google Scholar 

  6. C.K. Jorgensen, Inorganic Complexes (Academic Press, London, 1963).

    Google Scholar 

  7. P.B. Ganguly and N.R. Dhar, J. Phys. Chem. 26, 701 (1922).

    Google Scholar 

  8. K.M. Parida, S. Kanungo, and B.R. Sant, Electrochim. Acta. 26, 435 (1984).

    Google Scholar 

  9. S. Bach, M. Henry, N. Baffier, and J. Livage, J. Solid State Chem. 88, 325 (1990).

    Google Scholar 

  10. J.P. Pereira-Ramos, R. Baddour, S. Bach, and N. Baffier, Solid State Ionics 53–56, 701 (1992).

    Google Scholar 

  11. P. Barboux, J.M. Tarascon, and F.K. Shokoohi, J. Solid State Chem. 94, 185 (1991).

    Google Scholar 

  12. M.T. Pope, Heteropoly and Isopolymetallates (Springer, Berlin, 1983).

    Google Scholar 

  13. J. Livage, Chem. Mater. 3, 578 (1991).

    Google Scholar 

  14. J. Lemerle, L. Nejem, and J. Lefebvre, J. Inorg. Nucl. Chem. 42, 17 (1980).

    Google Scholar 

  15. N. Gharbi, C. Sanchez, J. Livage, J. Lemerle, L. Nejem, and J. Lefebvre, Inorg. Chem. 21, 2758 (1982).

    Google Scholar 

  16. R.A. Eggleton and R.W. Fitzpatrick, Clays and Clay Miner. 36, 111 (1988).

    Google Scholar 

  17. J.P. Jolivet, E. Trone, P. Belleville, and J. Livage in Better Ceramics through Chemistry, Mat. Res. Soc. Symp. Proc. 180, 289 (1990).

    Google Scholar 

  18. E. Tronc, P. Belleville, J.P. Jolivet, and J. Livage, Langmuir 8, 313 (1992).

    Google Scholar 

  19. N.F. Mott, J. Non-Cryst. Solids 1, 1 (1968).

    Google Scholar 

  20. C. Guestaux, J. Leauté, C.Virey, and J.Vial, U.S. Patent 3,658,573 (April 1992).

  21. R.J. Colton, A.M. Guzman, and J.W. Rabalais, Acc. Chem. Res. 11, 170 (1978).

    Google Scholar 

  22. C.M. Lampert, Solar Energy Materials 11, 1 (1982).

    Google Scholar 

  23. J. Livage, Solid State Ionics. 50, 307 (1992).

    Google Scholar 

  24. P. Barboux, N. Baffier, R. Morineau and J. Livage, J. Solid State Ionics 9–10, 1073 (1983).

    Google Scholar 

  25. A. Inubushi, S. Masuda, M. Okubo, A. Matsumoto, H. Sadamura, and K. Suzuki in High Tech Ceramics, edited by P. Vincenzini (Elsevier, Amsterdam, 1987), p. 2165.

    Google Scholar 

  26. A. Clearfield, Chem. Rev. 88, 125 (1988).

    Google Scholar 

  27. J.J. Legendre and J. Livage, J. Colloids and Interface Sci. 94, 75 (1983).

    Google Scholar 

  28. T. Yao, Y. Oka, and N. Yamamoto, Mat. Res. Bull. 27, 669 (1992).

    Google Scholar 

  29. P. Aldebert, N. Baffier, N. Gharbi, and J. Livage, Mat. Res. Bull. 16, 669 (1981).

    Google Scholar 

  30. L. Znaidi, N. Baffier, and M. Huber, Mat. Res. Bull. 24, 1501 (1989).

    Google Scholar 

  31. M.G. Kanatzidis, C.G. Wu, J. Am. Chem. Soc. 111, 4139 (1989).

    Google Scholar 

  32. M.G. Kanatzidis, C.G. Wu, H.O. Marcy, D.C. DeGroot, and C.R. Kannewurf, Chem. Mater. 2, 222 (1990).

    Google Scholar 

  33. Y.J. Liu, D.C. DeGroot, J.L. Schindler, C.R. Kannewurf, and M.G. Kanatzidis, Chem. Mater. 3, 992 (1991).

    Google Scholar 

  34. R. Schöllhorn, Angew. Chem. Int. Ed. Engl. 19, 983 (1980).

    Google Scholar 

  35. J. Farcy, R. Messina, and J. Perichon, J. Electrochem. Soc. 137, 1337 (1990).

    Google Scholar 

  36. R. Baddour, J.P. Peirera-Ramos, R. Messina, and J. Perichon, J. Electroanal. Chem. 277, 359 (1990).

    Google Scholar 

  37. A. Chemseddine, R. Morineau, and J. Livage, Solid State Ionics 9–10, 357 (1983).

    Google Scholar 

  38. P. Judeinstein and J. Livage, J. Mater. Chem. 1, 621 (1991).

    Google Scholar 

  39. N.R. Lynam, F.H. Moser, and B.P. Hichwa, Optical Materials Technology for Energy Efficiency and Solar Energy Conversion VI, SPIE, 823, 130 (1987).

    Google Scholar 

  40. P. Judeinstein, R. Morineau, and J. Livage, Solid State Ionics 51, 239 (1992).

    Google Scholar 

  41. J. Livage, P. Barboux, E. Tronc, and J.P. Jolivet in Science of Ceramic Chemical Processing, edited by L.L. Hench and D.R. Ulrich (Wiley, 1986) p. 278.

  42. P. Barboux, D. Gourier, and J. Livage, Colloids and Surfaces 11, 119 (1984).

    Google Scholar 

  43. O. Dvorak, J. Diers, and K. De Armond, Chem. Mater. 4, 1074 (1992).

    Google Scholar 

  44. F. Babonneau, P. Barboux, F.A. Josien, and J. Livage, J. Chim. Phys. 82, 761 (1985).

    Google Scholar 

  45. J. Livage, Mat. Res. Bull. 26, 1173 (1991).

    Google Scholar 

  46. T. Yao, Y. Oka, and N. Yamamoto, J. Mater, Chem. 2, 337 (1992).

    Google Scholar 

  47. J.P. Jolivet, R. Massart, and J.M. Fruchart, Nouv. J. Chimie 7, 325 (1983).

    Google Scholar 

  48. J.P. Jolivet and E. Tronc, J. Colloid and Interf. Sci. 125, 688 (1988).

    Google Scholar 

  49. E. Tronc, J.P. Jolivet, J. Lefebvre, and R. Massart, J.Chem. Soc. Faraday Trans. 1, 80, 2619 (1984).

    Google Scholar 

  50. E. Tronc, J.P. Jolivet, P. Belleville, and J. Livage, Hyperfine Interactions 46, 637 (1989).

    Google Scholar 

  51. J.P. Jolivet, E. Tonc, C. Barbe, and J. Livage, J. Colloids and Interf. Sci. 138, 465 (1990).

    Google Scholar 

  52. J.C. Hunter, J. Solid State Chem. 39, 142 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Livage, J. Redox reactions in transition metal oxide gels. J Sol-Gel Sci Technol 1, 21–33 (1993). https://doi.org/10.1007/BF00486426

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00486426

Key words

Navigation