Skip to main content
Log in

Effect of nystatin, amphotericin B and amphotericin B methyl ester on Saccharomyces cerevisiae with different lipid composition

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Saccharomyces cerevisiae was cultured under anaerobiosis in semi-complete medium to which either palmitoleic or oleic acid was added. Cells were grown at 20 °C or 30 °C. The levels of total lipids, total sterols, and phospholipids were higher in cells grown at 20 °C than at 30 °C. The effects of nystatin (NYS), amphotericin B (AMB), and amphotericin B methyl ester (AME) were evaluated by determining cell viability and liberation of intracellular compounds. The loss of cell viability is higher in the first 30 minutes of incubation with the drugs and is the same regardless of the type of cells obtained. Low molecular weight compounds and ions such as K+ are liberated a few minutes after incubation with the drugs whereas proteins and substances absorbing at 260 nm are liberated later. Phosphate liberation comes after K+ and before compounds of higher molecular weights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alterthum F. Efeito da nistatina em células de Saccharomyces cerevisiae contendo diferentes esteróis e ácidos graxos incorporados à membrana. São Paulo, Institute de Química da USP, 1975 (Tese de Livre-Docência).

    Google Scholar 

  2. Alterthum F, Rose AH. Osmotic lysis of sphaeroplasts from Saccharomyces cerevisiae grown anaerobically in media containing different unsaturated fatty acids. J Gen Microbiol 1973; 77: 371–82.

    Google Scholar 

  3. Andreasen AA, Stier TJB. Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirement for growth in a defined medium. J Cell Comp Physiol 1953; 41: 23–36.

    Google Scholar 

  4. Andreasen AA, Stier TJB. Anaerobic nutrition of Saccharomyces cerevisiae. II. Insaturated fatty acid requirement for growth in a defined medium. J Cell Comp Physiol 1954; 43: 271–81.

    Google Scholar 

  5. Archer DB, Gale EF. Antagonism by sterols of the action of amphotericin B and filipin on the release of potassium ions from Candida albicans and Mycoplasma mycoides subsp. capri. J Gen Microbiol 1970; 90: 187–90.

    Google Scholar 

  6. Bannatyne RM, Cheung R. Comparative susceptibility of Candida albicans to amphotericin B and amphotericin B methyl ester. Amtimicrob Agents Chemother 1977; 12 (4): 449–50.

    Google Scholar 

  7. Bolard J, Cheron M. Association of the polyene antibiotic amphotericin B with phospholipid vesicles: perturbation by temperature changes. Can J Biochem 1982; 60 (8): 782–9.

    Google Scholar 

  8. Brajtburg J, Kobayashi D, Medoff G, Kobayashi GS. Antifungal action of amphotericin B in combination with other polyene or imidazole antibiotics. J Infect Dis 1982; 146 (2): 38–46.

    Google Scholar 

  9. Carvalhal MLC. Estudo da sensibilidade de células de Saccharomyces cerevisiae à ação da nistatina. São Paulo, Instituto de Química da USP 1979 (Tese — Doutoramento).

    Google Scholar 

  10. Carvalhal MLC, Castellani BR, Alterthum F. Efeito de antibióticos poliênicos sobre Saccharomyces cerevisiae contendo diferentes esteróis e ácidos graxos insaturados incorporados à membrana citoplasmática. Rev Microbiol 1980; 11 (3): 71–5.

    Google Scholar 

  11. Cass A, Finkelstein A, Krespi V. The ion permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. J Gen Physiol 1970; 56: 100–24.

    Google Scholar 

  12. Castellani BR. Efeito da anfotericina B em células de Saccharomyces cerevisiae contendo diferentes esteróis e ácidos graxos insaturados incorporados à membrana. São Paulo, Escola Paulista de Medicina 1978 (Dissertação, Mestrado).

    Google Scholar 

  13. Chang SB, Matson RS. Membrane stability (thermal) and nature of fatty acids in yeast cells. Biochem Biophys Res Commun 1972; 46 (4): 129–35.

    Google Scholar 

  14. Chen PS, Toribara TY, Warner H. Microdetermination of phosphorus. Analyt Chem 1956; 28: 1756–8.

    Google Scholar 

  15. Chen WC, Chou DL, Feingold DS. Dissociation between ion permeability and the lethal action of polyene antibiotics on Candida albicans. Antimicrob Agents Chemother 1978; 13: 914–7.

    Google Scholar 

  16. Chen WC, Sud IJ, Chou DL, Feingold DS. Selective toxicity of the polyene antibiotics and their methyl ester derivatives. Biochem Biophys Res Commun 1977; 74 (2): 480–7.

    Google Scholar 

  17. Child JJ, Défago G, Haskins RH. The effect of cholesterol and polyene antibiotics on the permeability of the protoplasmic membrane of Pythium PRL 2142. Canad J Microbiol 1969; 15: 559–603.

    Google Scholar 

  18. Debono M, Abbott BJ, Fukuda DS, Barnhart M, Willard KE, Naolloy RM, Michel KH, Turner JR, Butler TI, Hunt AH. Synthesis of the new analogs of echinocandin B by enzymatic deacylation and chemical reacylation of the echinocandin B peptide: synthesis of the antifungal agent citofungin (Ly 121019). J Antib 1989; 42 (3): 389–97.

    Google Scholar 

  19. De Kruyff B, Demel RA. Polyene antibiotic-sterol interaction in membranes of Acholeplasma laidlawii cells and lecithin liposomes. III. Molecular structure of the polyene antibiotic-cholesterol complexes. Biochem Biophys Acta 1974; 339: 57–70.

    Google Scholar 

  20. Farrel J, Rose AH. Temperature effects on microorganisms. Ann Rev Microbiol 1967; 21: 101–20.

    Google Scholar 

  21. Finkelstein A, Holz R. Aqueous pores created in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. In: Eisenman G, Kker M, eds. Membranes 1973; New York, Vol. 2, pp. 377–408.

  22. Gale EF. Perspectives in chemotherapy. Brit Med J 1973; 4: 33–8.

    Google Scholar 

  23. Gale EF. The release of potassium ions from Candida albicans in the presence of polyene antibiotics. J Gen Microbiol 1974; 80: 451–65.

    Google Scholar 

  24. Galgiani JN, van Wyck DB. Ornithyl Amphotericin Methyl Ester treatment of experimental cadidiasis in rats. Antimicrob Agents Chemother 1984; 26 (1): 108–9.

    Google Scholar 

  25. Gottlieb D, Carter HE, Sloneker JH, Amman A. Protection of fungi against polyene antibiotics by sterols. Science 1958: 128: 361.

    Google Scholar 

  26. Hamdan JS, Resende MA. Lipid composition and effect of amphotericin B on yeast cells of Paracoccidioides brasiliensis. Mycopathologia 1988; 102: 97–105.

    Google Scholar 

  27. Howarth WR, Tewari RP, Solotorovsky M. Comparative in vitro anifungal activity of amphotericin B and amphotericin B methyl ester. Antimicrob Agents Chemother 1975; 7 (1): 58–63.

    Google Scholar 

  28. Hsu-Chen CC, Feingold DS. Polyene antibiotic action on lecithin liposomes: effect of cholesterol and fatty acyl chains. Biochem Biophys Res Commun 1973; 51 (4): 972–8.

    Google Scholar 

  29. Hunter Jr, EO, McVeigh J. The effect of selected antibiotics on pure cultures of algae. Am J. Bot 1961; 48: 179–85.

    Google Scholar 

  30. Hunter K, Rose AH. Lipid composition of Saccharomyces cerevisiae as influenced by growth temperatures. Biochim Biophys Acta 1972; 260: 639–53.

    Google Scholar 

  31. Huston A, Hoeprich P. Comparative susceptibility of four kinds of pathogenic fungi to amphotericin B and amphotericin B methyl ester. Antimicrob Agents Chemother 1978; 3 (6): 905–9.

    Google Scholar 

  32. Karst F, Jund R. Sterol replacement in Saccharomyces cerevisiae. Effect on cellular permeability and sensitivity to nystatin. Biochem Biophys Res Commun 1976; 71 (2): 535–43.

    Google Scholar 

  33. Keim GR, Poutsiaka JW, Kirpan J, Keysser CH. Amphotericin B: comparative acute toxicity. Science 1973; 179: 584–5.

    Google Scholar 

  34. Kinsky SC. Nystatin binding by protoplasts and particulate fraction of Neurospora crassa, and a basis for the selective toxicity of polyene antifungal antibiotics. Proc Nat Acad Sci USA 1962; 48: 1049–56.

    Google Scholar 

  35. Kinsky SC. Comparative responses of Mammalian erythrocytes and microbial protoplasts to polyene antibiotics and vitamin A. Arch Biochem Biophys 1963; 102: 180–8.

    Google Scholar 

  36. Kinsky CS, Gronau CR, Weber MM. Interaction of polyene antibiotics with subcellular membrane systems. I. Mitocondria Mol Pharmacol 1965; 1: 190–201.

    Google Scholar 

  37. Kinsky SC, Luse SA, Van Deenen LLM. Interaction of polyene antibiotics with natural and artificial membrane systems. Fed Proc 1966; 25: 1503–10.

    Google Scholar 

  38. Kobayashi GS, Little JR, Medoff G. In vitro and in vivo comparisons of Amphotericin B and N-D-Ornithyl Amphotericin B Methyl Ester. Antimicrob Agents Chemother 1985; 27 (3): 302–5.

    Google Scholar 

  39. Kotler-Brajtburg J, Medoff G, Kobayashi GS. Boggs S, Schlessinger D, Pandey RC, Rinehart Jr, KL. Classification of polyene antibiotics according to chemical structure and biological effects. Antimicrob Agents Chemother 1979; 15 (5): 716–22.

    Google Scholar 

  40. Lampen JO, Arnow P. Significance of nystatin uptake for its antifungal action. Proc Soc Exp Biol Med 1959; 101: 792–7.

    Google Scholar 

  41. Lampen JO, McLellan WL, El Nakeeb MA. Antibiotics and fungal physiology. Antimicrob Agents Chemother 1966; 1965: 1006–15.

    Google Scholar 

  42. Lampen JO, Morgan ER, Slocum A. Effects of nystatin on the utilization of substrates by yeast and other fungi. J Bact 1957; 74: 297–302.

    Google Scholar 

  43. Lampen, JO, Morgan ER, Slocum A, Arnow P. Absorption of nystatin by microorganisms. J Bact 1959; 78: 282–9.

    Google Scholar 

  44. Lefler E, Brummer E, Perlman AM, Stevens DA. Activities of the modified polyene N-D-Ornithyl Amphotericin Methyl Ester and the Azoles ICI 153066, Bay n 7133, and Bay 19139 compared with those of Amphotericin B and Ketoconazole in the therapy of experimental blastomycosis. Antimicrob Agents Chemother 1985; 27 (3): 363–6.

    Google Scholar 

  45. Lowry OH, Rosenbrough NJ, Farr A, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem 1951; 193: 265–75.

    Google Scholar 

  46. Marini F, Arnow P, Lampen JO. The effect of monovalent cations on the inhibition of yeast metabolism by nystatin. J Gen Microbiol 1961; 24: 51–62.

    Google Scholar 

  47. Mechlinski W, Schaffner CP. Polyene macrolide derivatives. I. N-acylation and esterification reactions with amphotericin B. J Antib 1972; 25 (4): 256–8.

    Google Scholar 

  48. McGinnis MR, Rinaldi MG. Antifungal drugs: mechanisms of action, drug resistence, susceptibility testing, and assays of activity in biological fluids. In: Lorian V, ed. Antibiotics in Laboratory Medicine. 2nd ed., Baltimore, Williams & Wilkins, 1986.

    Google Scholar 

  49. Ndzinge I, Peters SD, Tomas AH. Assay of nystatin based on the measurement of potassium released from Saccharomyces cerevisiae. Analyst 1977; 102: 328–32.

    Google Scholar 

  50. Oblack DL, Hewitt WL, Martin WJ. Comparative in vitro susceptibility of yeasts to amphotericin B and three methyl ester derivates. Antimicrob Agents Chemother 1981; 19 (1): 106–9.

    Google Scholar 

  51. Ohlweiller OA. Química analítica quantitativa 1974; Livros Técnicos e Científicos, Vol. 3, pp. 789–803.

    Google Scholar 

  52. Osteaux R, Tran-Van-Ky, Biquet P. Contribution à l'étude du mode d'action de la nystatine sur Candida albicans. CR Acad Sci 1958; 247: 2475–7.

    Google Scholar 

  53. Perfect JR, Durack DT. Comparison of Amphotericin B and N-D-Ornithyl Amphotericin B Methyl Ester in experimental cryptococcal meningitis and Candida albicans endocarditis with pyelonephritis. Antimicrob Agents Chemother 1985; 28 (6): 751–5.

    Google Scholar 

  54. Pringle JR, Mor JR. Methods for monitoring the growth of yeast cultures and for dealing with the clumping problem. In: Prescott DM, ed. Methods in cell biology 1975; Academic Press, Vol. 9, pp. 131–68.

  55. Resende MA, Alterthum F. Effect of temperature on the lipid composition of anaerobically grown Saccharomyces cerevisiae. Rev Latinoamer Microbiol 1986; 28: 345–9.

    Google Scholar 

  56. Sandhu DK. Effect of amphotericin B on the metabolism of Aspergillus fumigatus. Mycopathol 1979; 68 (1): 23–9.

    Google Scholar 

  57. Schwartz RE, Giacobre RA, Bland JA, Monaghan RL. L-671, 329, a new antifungal agent. I. Fermentation and isolation. J Antib 1989; 42 (2): 163–7.

    Google Scholar 

  58. Starr PR, Parks LW. Effect of temperature on sterol metabolism in yeast. J Cell Comp Physiol 1962; 58: 107–10.

    Google Scholar 

  59. Takano W. Estudo do comportamento metabólico de suspensões não proliferantes da Saccharomyces cerevisiae, cultivado previamente em aerobiose e anaerobiose; efeito da Nistatina. Instituto de Química da USP 1979 (Dissertação, Mestrado).

  60. Van Hoogevest P, De Krujff B. Effect of amphotericin B on cholesterol-containing liposomes of egg phosphatidyl-Choline and Didocosenoyl phosphotidyl-Choline Biochim. Biophys Acta 1978; 511: 397–407.

    Google Scholar 

  61. Van Zutphen H, Demel RA, Norman AW, Van Deenen LLM. The action of polyene antibiotics on lipid bilayer membranes in the presence of several cations and anions. Biochim Biophys Acta 1971; 241: 310–30.

    Google Scholar 

  62. Van Zutphen H, Van Deenen LLM, Kinsky SC. The action of polyene antibiotics on bilayer lipid membranes. Biochem Biophys Res Commun 1966; 22: 393–8.

    Google Scholar 

  63. Walsh TJ. Recent advances in the treatment of systemic fungal infections: a brief review-ASM news 1988; 54 (5): 240–3.

    Google Scholar 

  64. Zygmunt WA. Intracellular loss of potassium in Candida albicans after exposure to polyene antifungal antibiotics. Appl Microbiol 1966; 14: 953–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Resende, M.A., Alterhum, F. Effect of nystatin, amphotericin B and amphotericin B methyl ester on Saccharomyces cerevisiae with different lipid composition. Mycopathologia 112, 165–172 (1990). https://doi.org/10.1007/BF00436649

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00436649

Key words

Navigation