Skip to main content
Log in

A fine restriction map of the linear mitochondrial DNA of Tetrahyemena pyriformis: genome size, map locations of rRNA and tRNA genes, terminal inversion repeat, and restriction site polymorphism

  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

A fine restriction map of the linear mitochondrial DNA of Tetrahymena pyrifonnis strain ST is presented. 1. Based on agarose gel electrophoresis data together with limited nucleotide sequences available on some restriction fragments, we estimate the actual size of this genome to be about 55,000 base pairs. 2. Seven tRNA gene locations have been assigned, which are scattered along the genome length. Six of these locations encode the genes for tRNAPphe, tRNAhis, tRNAtrp, and tRNAglu, and the duplicate tRNAtyr genes which are located at the inverted terminal repeat segments. The tRNA gene(s) encoded in one location has not been identified. We have not yet found the tRNAleu and tRNAmet genes, which were previously shown to be encoded in the genome (Chiu et al. 1974; Suyama 1982). 3. We have mapped the 14S rRNA gene by sequencing the 170 bp segment of EcoRl fragment 8 and by aligning its sequence with E. coli 16S rRNA. From our recent complete sequence data the gene size was found to be about 1,650 bp, which is unexpectedly large for the 14S rRNA which has an estimated size of 1,300 bp. The 14S rRNA is probably a cleavage product of the larger primary transcript of which 200–300 bases of the 5′ end are missing. 4. The duplicate copies of the 21S rRNA gene at the terminal duplication inversion segments were analyzed. ClaI fragment 7 (1,500 bp) corresponds in sequence from base position 850 to 2,390 of the 20S rRNA gene of Paramecium mitochondrial DNA (Seilhamer et al. 1984b). The 21S gene is approximately 2,500 by long. The presence of some restriction site polymorphism is apparent in this segment. 5. Each of the 21S gene copies precedes the tRNAtyr gene, but the space flanking one tRNAtyr gene differs in size and restriction sites from the space flanking another tRNAtyr gene. Thus, this space corresponds to the segment of an imperfect match in the terminal duplication inversion of Goldbach et al. (1978a). 6. Saccharomyces cerevisiae mitochondrial probes including Cob, ATPase VI and IX, and cytochrome oxidase I gene sequences, 21S and 15S rRNAs, and mouse mitochondrial DNA showed no significant hybridization with any restriction fragments of Tetrahymena mitochondrial DNA. The results are in accordance with an extensive sequence divergence previously found in the Tetrahymena mitochondrial genome (Goldbach et al. 1977).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson A, Banker AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Nature 290:457–464

    Google Scholar 

  • Bibb MJ, Van Etten RA, Wright CT, Wright MW, Walberg MW, Clayton DA (1981) Cell 26:167–180

    Google Scholar 

  • Bonitz SG, Berlani R, Coruzzi G, Li M, Macino G, Nobrega FG, Nobrega MP, Thalanfeld BE, Tzagoloff A (1980) Proc Natl Acad Sci USA 77:3167–3170

    Google Scholar 

  • Brosius J, Palmer ML, Kennedy PJ, Noller HF (1978) Proc Natl Acad Sci USA 75:4801–4805

    Google Scholar 

  • Bruce AG, Uhlenbeck OC (1978) Nucleic Acids Res 5:3665–3677

    Google Scholar 

  • Chi JCH, Suyama Y (1970) J Mol Biol 53:531–556

    Google Scholar 

  • Chiu N, Chiu A, Suyama Y (1974) J Mol Biol 82:441–457

    Google Scholar 

  • Chiu N, Chiu A, Suyama Y (1975) J Mol Biol 99:37–50

    Google Scholar 

  • Clary DO, Wolstenholme DR (1983) Nucleic Acids Res 11:6859–6872

    Google Scholar 

  • Clary DO, Wahleithner JA, Wolstenholme DR (1983) Nucleic Acids Res 8:2411–2425

    Google Scholar 

  • Davis RW, Botstein D, Roth JR (1980) Advanced bacterial genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor NY, pp 227–230

    Google Scholar 

  • Denhardt DT (1966) Biochem Biophys Res Comm 23:641–646

    Google Scholar 

  • Goddard JM, Cummings DJ (1975) J Mol Biol 97:593–609

    Google Scholar 

  • Goldbach RW, Arnberg AC, Van Bruggen EFJ, Defize J, Borst P (1977) Biochim Biophys Acta 477:37–50

    Google Scholar 

  • Goldbach RW, Borst P, Bollen-De Boer JE, Van Bruggen EFG (1978a) Biochim Biophys Acta 521:169–186

    Google Scholar 

  • Goldbach RW, Bollen-De Boer JE, Van Bruggen EFJ, Borst P (1978b) Biochim Biophys Acta 52:187–197

    Google Scholar 

  • Goldbach RW, Bollen-De Boer JE, Van Bruggen EFJ, Borst P (1979) Biochim Biophys Acta 562:400–417

    Google Scholar 

  • Gross SR, Hsieh T, Levine PH (1984) Cell 38:233–239

    Google Scholar 

  • Heckman JE, Sarnoff J, Alzer-DeWeered B, Yin S, RajBhandary UL (1980) Proc Natl Acad Sci USA 77:3159–3163

    Google Scholar 

  • Kawano S, Suzuki T, Kuriwa T (1982) Biochim Biophys Acta 696:290–298

    Google Scholar 

  • Köchel HG, Lazarus CM, Basak N, Küntzel H (1981) Cell 23:625–633

    Google Scholar 

  • Küntzel H, Köchel HG, Lazarus CM, Lunsdorf H (1982) Mitochondrial genes in Aspergillus. In: Slonimski P, Borst P, Attardi G (eds) Mitochondrial genes. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 391–403

    Google Scholar 

  • Kurland CG (1960) J Mol Biol 2:83–91

    Google Scholar 

  • Martin NC, Miller DL, Donelson JE, Sigurdson C, Harley JL, Monynihan PS, Pharn HD (1979) Identification and sequencing of yeast mitochondrial tRNA genes in mitochondrial DNA-pBR322 recombinants. In: Cummings DJ, Borst P, Dawid IB, Weissman SM, Fox CF (eds) Extrachromosomal DNA ICN-UCLA symposia on molecular and cellular biology, vol 15. Academic Press, New York, pp 357–375

    Google Scholar 

  • Maxam AM, Gilbert W (1980) Methods Enzymol 65:499–495

    Google Scholar 

  • Rigby PWJ, Dieckermann H, Rhodes C, Berg P (1977) J Mol Biol 113:237–251

    Google Scholar 

  • Rüther U (1982) Nucleic Acids Res 10:5765–5772

    Google Scholar 

  • Schutgens RBH, Reijnders L, Hoekstra SP, Borst P (1973) Biochim Biophys Acta 308:372–380

    Google Scholar 

  • Seilhamer JJ, Cummings DJ (1981) Nucleic Acids Res 9:6391–6406

    Google Scholar 

  • Seilhamer JJ, Olson GL, Cummings DJ (1984a) J Biol Chem 259:5167–5172

    Google Scholar 

  • Seilhamer JJ, Gutell RR, Cummings DJ (1984b) J Biol Chem 259:5173–5181

    Google Scholar 

  • Silberklang M, Gillum AM, RajBhandary UL (1977) Nucleic Acids Res 4:4091–4108

    Google Scholar 

  • Spencer DF, Schnare MN, Gray MW (1984) Proc Natl Acad Sci USA 81:493–497

    Google Scholar 

  • Southern EM (1975) J Mol Biol 98:503–517

    Google Scholar 

  • Suyama Y (1966) Biochemistry 5:2214–2221

    Google Scholar 

  • Suyama Y (1969) DNA, RNA and ribosomes in Tetrahymena mitochondria. Atti del Seminario di Studi Biologici 4:83141. Adriatica Editrice, Bari, Italy

    Google Scholar 

  • Suyama (1982) Native and imported tRNAs in Tetrahymena mitochondria: evidence for their involvement in intramitochondrial translation. In: Slonimski P, Borst P, Attardi G (eds) Mitochondrial genes. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 449–455

    Google Scholar 

  • Suyama Y, Miura K (1968) Proc Natl Acad Sci USA 60:235–242

    Google Scholar 

  • Suyama Y, Preer JR (1965) Genetics 52:1051–1058

    Google Scholar 

  • Tzagoloff A, Macino G, Nobrega MP, Li M (1979) In: Cummings DJ, Borst P, Dawid JB, Weissmann SM, Fox CF (eds) Extrachromosomal DNA ICN-UCLA symposia on molecular and cellular biology, vol 15. Academic Press, New York, pp 339–355

    Google Scholar 

  • Vierra J, Messing J (1982) Gene 19:259–268

    Google Scholar 

  • Wesolowski M, Fukuhara H (1979) Mol Gen Genet 170:261–275

    Google Scholar 

  • Wesolowski M, Fukuhara H (1981) Mol Cell Biol 1:387–393

    Google Scholar 

  • Wesolowski M, Algeri A, Fukuhara H (1981) Curr Genet 3:157–162

    Google Scholar 

  • Williamson DH, Fennel DJ (1975) Methods Cell Biol 12:335–351

    Google Scholar 

  • Wong JFH, Ma DP, Wilson RK, Roe BA (1983) Nucleic Acids Res 11:4977–4995

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suyama, Y., Fukuhara, H. & Sor, F. A fine restriction map of the linear mitochondrial DNA of Tetrahyemena pyriformis: genome size, map locations of rRNA and tRNA genes, terminal inversion repeat, and restriction site polymorphism. Curr Genet 9, 479–493 (1985). https://doi.org/10.1007/BF00434053

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00434053

Key words

Navigation