Skip to main content
Log in

The relationship between oxidase activity, peroxidase activity, hydrogen peroxide, and phenolic compounds in the degradation of indole-3-acetic acid in vitro

  • Published:
Planta Aims and scope Submit manuscript

Abstract

The peroxidase catalyzed degradation of indole-3-acetic acid (IAA) results in the formation of indole-3-methanol (IM) in the presence of phenolic compounds or in 3-hydroxymethyloxindole (HMOx) in their absence. Apparently the phenols compote with a methyleneindolenine intermediate for H2O2 which is produced by oxidase action preceding the peroxidase action in the course of IAA degradation. The substitution pattern of various phenolic compounds tested strongly effects the rate of the reaction. However, this substitution pattern does not appear to effect the type of the reaction or the products formed. We suggest that the function of the “oxindole pathway” is to detoxify excess H2O2 in the absence of phenolic cosubstrates. The results lead to a number of interesting aspects of IAA biochemistry and to the proposal of a new reaction scheme for the peroxidase catalyzed degradation of IAA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BIM:

3,3′-bisindolylmethane

Caf:

caffeic acid

DCP:

2,4-dichlorophenol

Fer:

ferulic acid

HMOx:

3-hydroxymethyloxindole

HPPA:

3-(p-hydroxyphenyl) propionic acid

HRP:

horseradish proxidase

IAA:

indole-3-acetic acid

IAI:

indole-3-aldehyde

IM:

indole-3-methanol

MOx:

methylencoxindole

pC:

p-counaric acid

pOHB:

p-OH-benzoic acid

References

  • BeMiller, J.N., Colilla, W. (1972) Mechanism of corn, indole-3-acetic acid oxidase in vitro. Phytochemistry 11, 3393–3402

    Google Scholar 

  • Fox, L.R., Purves, W.K., Nakada, H.I. (1965) The role of horseradish peroxidase in indole-3-acetic acid oxidation. Biochemistry 4, 2754–2763

    Google Scholar 

  • Gelinas, D.A. (1973) Proposed model for the peroxidase-catalyzed oxidation of indole-3-acetic acid in the presence of the inhibitor ferulic acid. Plant Physiol. 51, 967–972

    Google Scholar 

  • Grambow, H.J. (1982) On the role of hydrogen peroxide in peroxidase catalyzed metabolism of indole-3-acetic acid. Z. Naturforsch. 37c, 884–888

    Google Scholar 

  • Grambow, H.J., Garden, G., Dallacker, F., Lehmann, A. (1977) 3,3′-Bis-indolylmethane: a growth regulator for Puccinia graminis f.sp. tritici. Z. Pflanzenphysiol. 82, 62–67

    Google Scholar 

  • Hinman, R.L., Lang, J. (1965) Peroxidase-catalyzed oxidation of indole-3-acetic acid. Biochemistry 4, 144–158

    Google Scholar 

  • Hope, H.J., Ordin, L. (1971) An improved procedure for the synthesis of oxindole-3-carbinol (hydroxymethyl oxindole). Phytochemistry 10, 1551–1553

    Google Scholar 

  • Lee, T.T., Starratt, A.N., Jevnikar, J.J. (1982) Regulation of enzymic oxidation of indole-3-acetic acid by phenols: structure-activity relationships. Phytochemistry 21, 517–523

    Google Scholar 

  • Leete, E. (1975) Biosynthesis and metabolism of gramine in Lupinus hartwegii. Phytochemistry 14, 471–474

    Google Scholar 

  • Macháčková, I., Gančeva, K., Zmrhal, Z. (1975) The role of peroxidase in the metabolism of indole-3-acetic acid and phenols in wheat. Phytochemistry 14, 1251–1254

    Google Scholar 

  • Magnus, V., Iskrié S., Kveder, S. (1971) Indole-3-methanol — a metabolite of indole-3-acetic acid in pea seedlings. Planta 97, 115–125

    Google Scholar 

  • Magnus, V., Šimaga, Š., Iskrié, S., Kveder, S. (1982) Metabolism of tryptophan, indole-3-acetic acid, and related compounds in parasitic plants from the genus Orobanche. Plant Physiol. 69, 853–858

    Google Scholar 

  • Miller, R.W., Parups, E.V. (1971) The effect of 2,2-diphenyl-1-picrylhydrazyl and p-cresol on the oxidative degradation of indole-3-acetate. Arch. Biochem. Biophys. 143, 276–285

    Google Scholar 

  • Nakajíma, R., Yamazaki, I. (1979) The mechanism of indole-3-acetic acid oxidation by horseradish peroxidase. J. Biol. Chem. 254, 872–878

    Google Scholar 

  • Ray, P.m. (1958) Destruction of auxin. Annu. Rev. Plant Physiol. 9, 81–118

    Google Scholar 

  • Ricard, J., Job, D. (1974) Reaction mechanisms of indole-3-acetate degradation by peroxidases. A stopped-flow and low-temperature spectroscopic study. Eur. J. Biochem. 44, 359–374

    Google Scholar 

  • Sembdner, G., Gross, D., Liebisch, H.W., Schneider, G. (1980) Biosynthesis and metabolism of plant hormones. In: Encyclopedia of plant physiology, N.S., vol. 9, pp. 281–444, Mac-Millan, J., ed, Springer, Berlin Heidelberg New York

    Google Scholar 

  • Schneider, E.A., Wightman, F. (1974) Metabolism of auxin in higher plants. Annu. Rev. Plant Physiol. 25, 487–513

    Google Scholar 

  • Silverstein, R.M., Ryskiewiec., E.E., Chaikin, S.W. (1955) 2-Pyrrolealdehyde, 3-hydroxymethylindole, and 2-hydroxymethylpyrrole. J. Am. Chem. Soc. 76, 4485–4486

    Google Scholar 

  • Suzuki, Y., Kawarada, A. (1978) Products of peroxidase catalyzed oxidation of indole-3-acetic acid. Agric. Biol. Chem. 42, 1315–1321

    Google Scholar 

  • Thesing, J. (1954) Beiträge zur Chemie des Indols. III. Mitteilung: Über die Einwirkung von Alkali auf quartäre Salze des Gramins. Chem. Ber. 87, 692–699

    Google Scholar 

  • Yamazaki, I., Tamura, M., Nakajima, R. (1981) Horseradish peroxidase-C. Mol. Cell. Biochem. 40, 143–153

    Google Scholar 

  • Zmrhal, Z., Macháčková (1978) Isolation and characterization of wheat peroxidae isoenzyme B1. Phytochemistry 17, 1517–1520

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grambow, H.J., Langenbeck-Schwich, B. The relationship between oxidase activity, peroxidase activity, hydrogen peroxide, and phenolic compounds in the degradation of indole-3-acetic acid in vitro. Planta 157, 132–137 (1983). https://doi.org/10.1007/BF00393646

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00393646

Key words

Navigation