Skip to main content
Log in

DNA in soil: adsorption, genetic transformation, molecular evolution and genetic microchip

  • Reviews
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

This review examines interactions between DNA and soil with an emphasis on the persistence and stability of DNA in soil. The role of DNA in genetic transformation in soil microorganisms will also be discussed. In addition, a postulated mechanism for stabilization and elongation/asserbly of primitive genetic material and the role of soil particles, salt concentrations, temperature cycling and crystal formation is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aardema BW, Lorenz MG, & Krumbein WE (1983) Protection of sediment-adsorbed transforming DNA against enzymatic inactivation. Appl. Environ. Microbiol. 46: 417–420.

    Google Scholar 

  • Akkermans ADL, Van Elsas JD, De Bruijn FJ (1995) Molecular Microbial Ecology Manual, Kluwer Academic Publishers, Dordrecht, Th e Netherlands

    Google Scholar 

  • Alef K, & Nannipieri P (Eds) (1995) Methods in Soil Microbiology and Biochemistry. Academic Press, New York

    Google Scholar 

  • Atlas RM, Bartha R (1993) Microbial Ecology, Benjamin/Cummings Publishing Company, Inc., Redwood City, CA, USA

    Google Scholar 

  • Bakken LR & Olsen RA (1989) DNA-content of soil bacteria of diffenent cell size. Soil Biol. Biochem. 21: 789–793

    Google Scholar 

  • Bengston S (Ed) (1994) Early Life on Earth. Columbia University Press, New York

    Google Scholar 

  • Blackburn NT, Seech AG & Trevors JT (1995) Survival and transport of lux-lac marked Pseudomonas fluorescens strain in uncontaminated and chemically contaminated soils. System. Appl. Microbiol. 17: 574–580

    Google Scholar 

  • Cairns-Smith AG (1985) Seven Clues to the Origin of Life: A Sci entific Detective Story, Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Cohen J (1995) Getting all turned around over the origins of life on earth. Science 267: 1265–1266

    Google Scholar 

  • Dai X, De Mesmaeker A, Joyce GF (1995) Cleavage of an amide bond by ribozyme. Science 267: 237–240

    Google Scholar 

  • DeFlaun MF, Paul JH, Jeffrey WH (1987) Distribution and molecular weight of dissolved DNA in subtropical estuarine and oceanic environments. Mar. Ecol. Prog. Ser. 38: 65–73

    Google Scholar 

  • Dijkmans R, Jagers A, Kreps S, Collard J-M, Mergeay M (1993) Rapid method for purification of soil DNA for hybridization and PCR analysis. Microb. Releases 2: 29–34

    Google Scholar 

  • England LS, Lee H, & Trevors JT (1995) Recombinant and wildtype Pseudomonas aureofaciens strains introduced into soil: effect on cellulose and straw decomposition. Mol. Ecol. 4: 221–230

    Google Scholar 

  • Flemming CA, Leung KT, Lee H, Trevors JT Greer C (1994) Survival of a lux-lac marked biosurfactant-producing Pseudomonas aeruginosa UG2 strain in soil: monitored by non-selective plating and PCR techniques. Appl. Environ. Microbiol. 60: 1606–1613

    Google Scholar 

  • Gauthier MJ (Ed) (1992) Gene Transfer and Environments, Springer-Verlag, Heidelberg, Germany

    Google Scholar 

  • Garko KA, Stewart GJ (1994) The effect of divalent cations on the binding of DNA to marine sediment. Microb. Releases 2: 191–199

    Google Scholar 

  • Gesteland RF & Atkins JF (Eds) (1993) The RNA World, Col Spring Harbor Laboratory Press, Plainview, New York USA

    Google Scholar 

  • Graham JB & Istock CA (1978) Gene exchange in Bacillus subtilis in soil. Mol. Gen. Genet. 166: 287–290

    Google Scholar 

  • Greaves MP & Wilson MJ (1969) The adsorption of nucleic acids by montmorillonite. Soil Biol. Biochem. 1: 317–323

    Google Scholar 

  • Greaves MP & Wilson MJ (1970) The degradation of nucleic acids and montmorillonite-nucleic acid complexes by soil microorganisms. Soil Biol. Biochem. 2:257–268

    Google Scholar 

  • Holben WE, Jannsson JK, Chelm BK, Tiedje JM (1988) DNA probe method for the detection of specific microorganisms in the soil bacterial community. Appl. Environ. Microbiol. 54: 703–711

    Google Scholar 

  • Jackman SC, Lee H, Trevors JT (1992) Survival, detection and cortainment of bacteria. Microb. Releases 1: 125–154

    Google Scholar 

  • Joyce GF, Orgel LE (1993) Prospects for understanding the origin of the RNA world. In: The RNA World (Eds Gesteland RF & Atkins JF) Cold Spring Harbor Laboratory Press, Plainview, New York USA

    Google Scholar 

  • Khanna M & Stotzky G (1992) Transformation of Bacillus subtilis by DNA bound on montmorillonite and effect of DNase on the transforming ability of bound DNA. Appl. Environ. Microbiol. 58: 1930–1939

    Google Scholar 

  • Klug WS, Cummings MR (1993) Essentials of Genetics, Macmillan Publishing Company, New York

    Google Scholar 

  • Klug WS, Cummings MR (1994) Concpts of Genetics, Macmillan College Company, New York

    Google Scholar 

  • Koch AL (1994) Development and diversification of the last universal ancestor. J. theor. Biol. 168: 269–280

    Google Scholar 

  • Leung K, England LS, Weir S, Cassidy M & Trevors JT (1994) Microbial diversity in soil: effect of releasing genetically-engineered bacteria. Mol. Ecol. 3: 413–422

    Google Scholar 

  • Leung K, Trevors JT, Van Elsas JD (1995a) Extraction and amplification of DNA from the rhizosphere and rhizoplane of plants. In: Trevors JT, Van Elsas (Eds) Nucleic Acids in the Environment: Methods and Applications, Springer-Verlag, Germany

    Google Scholar 

  • Leung K, Cassidy MB, Holmes SB, Lee H & Trevors JT (1995b) Survival of k-carrageenan-encapsulated and unencapsulated Pseudomonas aeruginosa UG2Lr cells in forest soil monitored by polymerase chain reaction and spread plating FEMS Microbiol. Ecol. 16: 71–82

    Google Scholar 

  • Levy SB & Miller RV (Eds) (1989) Gene Transfer in the Environment, McGraw-Hill, New York

    Google Scholar 

  • Lorenz MG, Aardema BW & Krumbein WE (1981) Interaction of marine sediment with DNA and DNA availability to nucleases. Mar. Biol. 64: 225–230

    Google Scholar 

  • Lorenz MG & Wackernagel W (1987) Adsorption of DNA to sand and variable degradation of adsorbed DNA. Appl. Environ. Microbiol. 53: 2948–2952

    Google Scholar 

  • Lorenz MG, Wackernagel W (1992) Stimulation of natural genetic transformation of Pseudomonas stutzeri in extracts of various soils by nitrogen or phosphorous limitation and influence of temperature and pH. Microb. Releases 1: 173–176

    Google Scholar 

  • Lorenz MG & Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol. Rev. 58: 563–602

    Google Scholar 

  • Lorenz MG, Aardema BW & Wackernagel W (1988) Highly efficient genetic transformation of Bacillus subtilis attached to sand grains. J. Gen. Microbiol. 134: 107–122

    Google Scholar 

  • Moore JA (1993) Science as way of Knowing. Harvard University Press, Cambridge, Massachusetts, USA

    Google Scholar 

  • Nielsen PE, Egholm M, Berg RH, Buchardt O (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254: 1497–1500

    Google Scholar 

  • Ogram A, Sayler G, Gustin D & Lewis R (1988) DNA sorption to soils and sediments. Environ. Sci. Technol. 22: 982–984

    Google Scholar 

  • Ogram AV, Mathot ML, Harsh JB, Boyle J, Pettigrew Jr. CA (1994) Effects of DNA polymer length on its adsorption to soils. Appl. Environ. Microbiol. 60: 393–396

    Google Scholar 

  • Porter RD (1988) Modes of gene transfer in bacteria. In: Genetic Recombination (Eds. R. Kucherlapat & G.R. Smith) American Society Microbiology, Washington, USA

    Google Scholar 

  • Romanowski G, Lorenz MG & Wackernagel W (1991) Adsorption of plasmid DNA to mineral surfaces and protection against DNase I. Appl. Environ. Microbiol. 57: 1057–1061

    Google Scholar 

  • Selenska S, Klingmuller W (1992) Direct recovery and molecular analysis of DNA from soil. Microb. Releases 1: 41–46

    Google Scholar 

  • Smalla K, Cresswell N, Mendonca-Hagler LC, Wolters A, Van Elsas JD (1993) Rapid DNA extraction protocol from soil for polymerase chain reaction-mediated amplification. J. Appl. Bacteriol. 74: 78–85

    Google Scholar 

  • Steffan RJ, Goksoyr J, Bej AK, Atlas RM (1988) Recovery of DNA from soils and sediments. Appl. Environ. Microbiol. 54: 2908–2915

    Google Scholar 

  • Stewart GJ & Carlson CA (1986) The biology of natural transformation. Ann. Rev. Microbiol. 40: 211–235

    Google Scholar 

  • Stotzky G & Babich H (1986) Survival of, and genetic transfer by, genetically engineered bacteria in natural environments. In: Adv. Appl. Microbiol. Vol 31, (Ed. A. I. Laskin), Academic Press, New York, pp 93–138

    Google Scholar 

  • Theng BKG (1979) formation and properties of clay-polymer complexes. Elsevier Science Publishing Co., Amsterdam

    Google Scholar 

  • Torsvik VL, Goksoyr J (1978) Determination of bacterial DNA in soil. Soil Biol. Biochem. 10: 7–12

    Google Scholar 

  • Trevors JT (1988) Use of microcosms to study genetic interactions between microorganisms. Microbiol. Sci. 5: 132–136

    Google Scholar 

  • Trevors JT (1992) Extraction of DNA from soil Microbial Releases. 1: 3–9

    Google Scholar 

  • Trevors JT (1995) Molecular evolution in bacteria. Antonie van Leeuwenhoek. 67: 315–324

    Google Scholar 

  • Trevors JT & Van Elsas JD (Eds.) (1995) Nucleic Acids in the Environment: Methods and Applications, Springer-Verlag, Heidelberg, Germany

    Google Scholar 

  • Trevors JT 1996. Nucleic acids in the environment. Current Opinion in Biotechnology. 7(3): (in press)

  • Trevors JT & Van Elsas J D (1996) Quantification of gene transfer in soil and rhizosphere. In: Manual of Environmental Microbiology, American Society for Microbiology, ASM Press, Washington D.C. (in press)

    Google Scholar 

  • Trevors JT, Barkay T & Bourquin AW (1987) Gene transfer among bacteria in soil and aquatic environiments: a review. Can. J. Microbiol. 33: 191–198

    Google Scholar 

  • Trevors JT, Kuikman P & Watson R (1994) Interactions between transgenic plants and biogeochemical cycles. Mol. Ecol. 3: 57–64

    Google Scholar 

  • Tsai Y-L, Olson BH (1991) Rapid method for direct extraction of DNA from soil and sediments. Appl Environ Microbiol 57: 1070–1074

    Google Scholar 

  • Turner DH, Bevilacqua PC (1993) Thermodynamic considerations for evolution by RNA. In. The RNA World (Eds Gesteland RF & Atkins JF) Cold Spring Harbor Laboratory Press, Plainview, New York, USA

    Google Scholar 

  • Van Elsas JD, Smit E (1995) Some considerations on gene transfer between bacteria in soil and rhizosphere. In: Molecular Ecology of Rhizosphere Microorganisms (Eds. F O'Gara, DN Dowling, B Boesten) (pp 151–164) VCH, Weinheim, Germany

    Google Scholar 

  • Van Elsas JD & Trevors JT (1991) Environmental risks and fate of genetically engineered microorganisms in soil. J. Environ. Sci. Health A 26(6): 981–1001

    Google Scholar 

  • Wachtershauser G. (1988) Pyrite formation, the first energy source for life: a hypothesis. System. Appl. Microbiol. 10: 207–210

    Google Scholar 

  • Weinberg SR & Stotzky G (1972) Conjugation and genetic recombination of Escherichia coli in soil. Soil Biol. Biochem. 4: 171–180

    Google Scholar 

  • Wellington EMH & Van Elsas JD (1992) Gene transfer between microorganisms in the natural environment. Pergamon Press, London

    Google Scholar 

  • Woese C R (1987) Bacterial evolution. Microbiol. Rev. 51: 221–271

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trevors, J.T. DNA in soil: adsorption, genetic transformation, molecular evolution and genetic microchip. Antonie van Leeuwenhoek 70, 1–10 (1996). https://doi.org/10.1007/BF00393564

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00393564

Key words

Navigation