Skip to main content
Log in

Neocortical layers I and II of the hedgehog (Erinaceus europaeus)

II. Thalamo-cortical connections

  • Original Articles
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

This study examines the thalamo-cortical projections to the most superficial neocortical layers in the hedgehog (Erinaceus europaeus) after small injections of horseradish peroxidase and horseradish peroxidase conjugated to wheat germ agglutinin in the somato-sensory cortex. The injections were limited to layers I, II and upper parts of layer III/IV. Retrogradely labeled cells were plotted in serial sections through the thalamus. Injections in the somato-sensory cortex gave a pattern of elongated columns of labeled cells, extending rostro-caudally in the nucleus ventralis thalami. In the neocortex, labeled fibers extended for considerable distances running horizontally in layer I. Complementary observations demonstrate the thalamic origin of certain, coarse ascending bundles observed previously in Golgi preparations of the hedgehog. It is concluded that a major cortical input to layer I originates in the hedgehog in the principal thalamic (relay) nuclei. After injections in the somato-sensory cortex, retrogradely labeled cells were also found in the nucleus ventro-medialis thalami and very few in a zone medial to the nucleus ventralis thalami corresponding to the intralaminar thalamic nuclei. The contributions of this latter system seem to be limited in comparison with other mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A :

hucleus amygdaloideus

Abol :

bulbus olfactorius accessorius

Al :

nucleus amygdaloideus lateralis

Am :

nucleus anterior medialis thalami

Av :

nucleus anterior ventralis thalami

Bol :

bulbus olfactorius

Bst :

nucleus interstitialis striae terminalis

Ca :

commissura anterior

Cc :

corpus callosum

Cen :

cortex entorhinalis

Ch :

Chiasma opticum

Ci :

capsula interna

Cp :

commissura posterior

Cpu :

nucleus caudatus putamen

Cs :

colliculus superior

Fmp :

fasciculus medialis prosencephali

Fmt :

fasciculus mamillothalamicus

For :

formatio reticularis

Fr :

fasciculus retroflexus

Fx :

columna fornicis

Gd :

gyrus dentatus

Gla :

nucleus geniculatus lateralis, pars dorsalis

Glv :

nucleus geniculatus lateralis, pars ventralis

Gm :

nucleus geniculatus medialis

Ha :

nucleus anterior hypothalami

Hb :

nucleus habenulae

Hdv :

nucleus dorsomedialis hypothalami

Hia :

hippocampus, pars anterior

Hip :

hippocampus

Hl :

nucleus lateralis hypothalami

Hvm :

nucleus ventromedialis hypothalami

Lm :

lemniscus medialis

Noa :

nucleus olfactorius anterior

Npm :

nucleus preopticus medialis

Ped :

crus cerebri

Pf :

nucleus parafascicularis

Pre :

pretectum

Pt :

nucleus paratenialis

Pv :

nucleus periventricularis

R :

nucleus reticularis thalami

Rcn :

regio cingularis (Brodmann)

Re :

nucleus reuniens

Rhi :

regio hippocampica (Brodmann)

Re :

nucleus reuniens

Rhi :

regio hippocampica (Brodmann)

Ro :

regio occipitalis (Brodmann)

Rol :

regio olfactoria (Brodmann)

Rpc :

regio precentralis (Brodmann)

Rrs :

regio retrosplenialis (Brodmann)

Rt :

regio temporalis (Brodmann)

Rti :

radiatio thalamica

Rt :

regio temporalis (Brodmann)

Rti :

radiatio thalamica

Rtn :

regio insularis (Brodmann)

S :

subiculum

Sf :

sulcus frontalis

Sm :

stria medullaris thalami

Sn :

substantia nigra

Srh :

sulcus rhinalis

St :

stria terminalis

Td :

tractus diagonalis (Broca)

Tl :

nucleus lateralis thalami

Tlp :

nucleus lateralis thalami, pars posterior

Tm :

nucleus medialis thalami

To :

tractus opticus

Tol :

tractus olfactorius lateralis

Tuo :

tuberculum olfactorium

Tv :

nucleus ventralis thalami

Tvd :

nucleus ventralis thalami, pars dorsalis

Tvm :

nucleus ventromedialis thalami

wm:

white matter of the cerebral cortex

References

  • Ahlsén G (1981) Retrograde labelling of retinogeniculate neurones in cat by HRP uptake from the diffuse injection site. Brain Res 223:374–380

    Article  PubMed  Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde. Barth, Leipzig, pp 193–197

    Google Scholar 

  • Cajal SR (1895) Apuntes para el estudio del bulbo raquídeo, cerebelo y origen de los nervios encefálicos. An Soc Esp Hist Nat 24:1–118

    Google Scholar 

  • Cajal SR (1911) Histologie du système nerveux de l'homme et des vertébrés, vol. II. Instituto Cajal, CSIC Madrid

    Google Scholar 

  • Carey RG, Fitzpatrick D, Diamond IT (1979) Layer I of striate cortex of Tupaia glis and Galago senegalensis: projections from thalamus and claustrum revealed by retrograde transport of horseradish peroxidase. J Comp Neurol 186:393–438

    PubMed  Google Scholar 

  • Dietrichs E, Walberg F, Haines DE (1985) Cerebellar nuclear afferents from feline hypothalamus demonstrated by retrograde transport after implantation of crystalline wheat germ agglutinin-horseradish peroxidase complex. Neurosci Lett 54:129–133

    PubMed  Google Scholar 

  • Donoghue JP, Kerman KL, Ebner FF (1979) Evidence for two organizational plans within the somatic sensory-motor cortex of the rat. J Comp Neurol 183:647–664

    PubMed  Google Scholar 

  • Ebbesson SOE (1980) The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development, and neural plasticity. Cell Tissue Res 213:179–212

    PubMed  Google Scholar 

  • Erickson RP, Hall WC, Jane JA, Snyder M, Diamond IT (1967) Organization of the posterior dorsal thalamus of the hedgehog. J Comp Neurol 131:103–130

    PubMed  Google Scholar 

  • Faull RLM, Carman JB (1968) Ascending projections of the substantia nigra in the rat. J Comp Neurol 132:73–92

    PubMed  Google Scholar 

  • Faull RLM, Carman JB (1978) The cerebellofugal projections in the brachium conjunctivum of the rat. I. The contralateral ascending pathway. J Comp Neurol 178:495–518

    PubMed  Google Scholar 

  • Faull RLM, Mehler WR (1978) The cells of origin of nigrotectal, nigrothalamic and nigrostriatal projections in the rat. Neuroscience 3:989–1002

    Article  PubMed  Google Scholar 

  • Flores A (1911) Die Myeloarchitektonik und die Myelogenie des Cortex Cerebri beim Igel (Erinaceus europaeus). J Psychol Neurol (Leipzig) 17:215–247

    Google Scholar 

  • Glenn LL, Hada J, Roy JP, Deschènes M, Steriade M (1982) Anterograde tracer and field potential analysis of the neocortical layer I projection from nucleus ventralis of the thalamus in cat. Neuroscience 7:1861–1877

    Article  PubMed  Google Scholar 

  • Gould III HJ, Hall WC, Ebner FF (1978) Connections of the visual cortex in the hedgehog (Paraechinus hypomelas). I. Thalamocortical projections. J Comp Neurol 177:445–472

    PubMed  Google Scholar 

  • Haight JR, Neylon L (1979) The organization of neocortical projections from the ventrolateral nucleus in the brush-tailed possum, Trichosurus vulpecula, and the problem of motor and somatic sensory convergence within the mammalian brain. J Anat 129:673–694

    PubMed  Google Scholar 

  • Haight JR, Neylon L (1981) An analysis of some thalamic projections to parietofrontal neocortex in the marsupial native cat, Dasyurus viverrinus (Dasyuridae). Brain Behav Evol 19:193–204

    PubMed  Google Scholar 

  • Hall WC, Diamond IT (1968) Organization and function of the visual cortex in hedgehog: I. Cortical cytoarchitecture and thalamic retrograde degeneration. Brain Behav Evol 1:181–214

    Google Scholar 

  • Hall WC, Ebner FF (1970a) Parallels in the visual afferent projections of the thalamus in the hedgehog (Paraechinus hypomelas) and the turtle (Pseudemys scripta). Brain Behav Evol 3:135–154

    PubMed  Google Scholar 

  • Hall WC, Ebner FF (1970b) Thalamotelencephalic projections in the turtle (Pseudemys scripta). J Comp Neurol 140:101–122

    PubMed  Google Scholar 

  • Herkenham M (1978a) Intralaminar and parafascicular efferents to the straitum and cortex in the rat: an autoradiographic study. Anat Rec 190:420

    Google Scholar 

  • Herkenham M (1978b) The connections of the nucleus reuniens thalami: evidence for a direct thalamo-hippocampal pathway in the rat. J Comp Neurol 177:589–610

    PubMed  Google Scholar 

  • Herkenham M (1979) The afferent and efferent connections of the ventromedial thalamic nucleus in the rat. J Comp Neurol 183:487–518

    PubMed  Google Scholar 

  • Herkenham M (1980) Laminar organization of thalamic projections to the rat neocortex. Science 207:532–535

    PubMed  Google Scholar 

  • Jasper HH (1954) Functional properties of the thalamic reticular system. In: Delafresnaye JF (ed) Brain mechanisms and consciousness, Blackwell, Oxford, pp 374–395

    Google Scholar 

  • Jones EG (1975a) Possible determinants of the degree of retrograde neuronal labeling with horseradish peroxidase. Brain Res 85:249–253

    Article  PubMed  Google Scholar 

  • Jones EG (1975b) Lamination and differential distribution of thalamic afferents within the sensory-motor cortex of the squirrel monkey. J Comp Neurol 160:167–204

    PubMed  Google Scholar 

  • Jones EG (1985) The thalamus. Plenum Press, New York London

    Google Scholar 

  • Jones EG, Hartman BK (1978) Recent advances in neuroanatomical methodology. Annu Rev Neurosci 1:215–296

    Article  PubMed  Google Scholar 

  • Jones EG, Leavitt RY (1974) Retrograde axonal transport and the demonstration of non-specific projections to the erebral cortex and striatum from thalamic intralaminar nuclei in the rat, cat and monkey. J Comp Neurol 154:349–378

    PubMed  Google Scholar 

  • Kaas J, Hall WC, Diamond IT (1970) Cortical visual areas I and II in the hedgehog: relation between evoked potential maps and architectonic subdivisions J Neurophysiol 33:595–615

    PubMed  Google Scholar 

  • Kato N, Kawaguchi S, Yamamoto T, Samejima A, Miyata H (1983) Postnatal development of the geniculocortical projection in the cat: electrophysiological and morphological studies. Exp Brain Res 51:65–72

    Article  PubMed  Google Scholar 

  • Killackey HP, Ebner FF (1972) Two different types of thalamocortical projections to a single cortical area in mammals. Brain Behav Evol 6:141–169

    PubMed  Google Scholar 

  • Killackey HP, Ebner FF (1973) Convergent projection of three separate thalamic nuclei on to a single cortical area. Science 179:283–285

    PubMed  Google Scholar 

  • König JFR, Klippel RA (1963) The rat brain. A stereotaxic atlas of the forebrain and lower parts of the brain stem. Williams and Wilkins, Baltimore

    Google Scholar 

  • Krettek JE, Price JL (1977) The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat. J Comp Neurol 171:157–192

    PubMed  Google Scholar 

  • Lende RA (1963a) Sensory representation on the cerebral cortex of the opossum (Didelphis virginiana). J Comp Neurol 121:395–403

    PubMed  Google Scholar 

  • Lende RA (1963b) Motor representation in the cerebral cortex of the opossum (Didelphis virginiana). J Comp Neurol 121:405–415

    PubMed  Google Scholar 

  • Lende RA (1964) Representation in the cerebral cortex of a primitive mammal. Sensorimotor, visual and auditory fields in the echidna (Tachyglossus aculeatus). J Neurophysiol 27:37–48

    PubMed  Google Scholar 

  • Lende RA, Sadler KM (1967) Sensory and motor areas in neocortex of hedgehog (Erinaceus). Brain Res 5:390–405

    Article  PubMed  Google Scholar 

  • Leonard CM (1969) The prefrontal cortex of the rat. I. Cortical projection of the medipdorsal nucleus. II. Efferent connections. Brain Res 12:321–343

    Article  PubMed  Google Scholar 

  • Lorente de Nó R (1922) La corteza cerebral del ratón (Primera contributión-La corteza acústica). Trab Lab, Invest Biol Univ Madrid 20:41–78

    Google Scholar 

  • Lorente de Nó R (1949) Cerebral cortex: architecture, intracortical connections, motor projections. In: Fulton JF (ed) Physiology of the nervous system. Oxford University Press, London, pp 288–300

    Google Scholar 

  • Marin-Padilla M (1984) Neurons of layer I. A developmental analysis. In: Peters A, Jones EG (eds) Cerebral cortex, vol 1. Cellular components of the cerebral cortex. Plenum Press, New York, pp 447–478

    Google Scholar 

  • Marin-Padilla M, Marin-Padilla TM (1982) Origin, prenatal development and structural organization of layer I of the human cerebral (motor) cortex. Anat Embryol 164:161–206

    Article  PubMed  Google Scholar 

  • Mesulam MM (1978) Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction-product with superior sensitivity for visualizing neural afferents and efferents. J Histochm Cytochem 26:106–117

    Google Scholar 

  • Mori J, Hori N, Katsuda N (1981) A new method for application of horseradish peroxidase into a restricted area of the brain. Brain Res Bull 6:19–22

    PubMed  Google Scholar 

  • Morison RS, Dempsey EW (1942) A study of thalamocortical relations. Am J Physiol 135:281–292

    Google Scholar 

  • Moruzzi G, Magoun HW (1949) Brain stem reticular formation and activation of the EEG. EEG Clin Neurophysiol 1:455–473

    Google Scholar 

  • Nauta WJH (1954) Terminal distribution of some afferent fiber systems in the cerebral cortex. Anat Rec 118:333 (abstr)

    Google Scholar 

  • Nauta WJH, Whitlock DG (1954) An anatomical analysis of the non-specific thalamic projection system. In: Delafresnaye JF (ed) Brain mechanisms and consciousness. Blackwell, Oxford, pp 81–104

    Google Scholar 

  • Nelson RJ, Kaas JH (1981) Connections of the ventroposterior nucleus of the thalamus with the body surface representations in cortical areas 3b and 1 of the cynomolgus macaque (Macaca fascicularis). J Comp Neurol 192:611–643

    Google Scholar 

  • O'Leary J, Bishop GH (1938) The optically excitable cortex of the rabbit. J Comp Neurol 68:423–478

    Google Scholar 

  • Paxinos G, Watson W (1982) The rat brain in stereotaxic coordinates. Academic Press, New York

    Google Scholar 

  • Powell TPS, Cowan WM (1954) The connections of the midline and intralaminar nuclei of the thalamus of the rat. J Anat 88:307–319

    PubMed  Google Scholar 

  • Rieck RW, Carey RG (1985) Organization of the rostral thalamus in the rat: Evidence for connections to layer I of visual cortex. J Comp Neurol 234:137–154

    PubMed  Google Scholar 

  • Royce GM, Mourey RJ (1985) Efferent connections of the centromedian and parafascicular thalamic nuclei: an autoradiographic investigation in the cat. J Comp Neurol 235:277–300

    PubMed  Google Scholar 

  • Saporta S, Kruger L (1977) The organization of thalamocortical relay neurons in the rat ventrobasal complex studied by retrograde transport of horseradish peroxidase. J Comp Neurol 174:187–208

    PubMed  Google Scholar 

  • Stephan H (1975) Allocortex. In: Oksche A, Vollrath L (s) Nervensystem (Handbuch der mikroskopischen Anatomie des Menschen, vol. 4/9) Springer, Berlin Heidelberg New York

    Google Scholar 

  • Strick PL (1976) Anatomical analysis of ventrolateral thalamic input to primate motor cortex. J Neurophysiol 39:1020–1031

    PubMed  Google Scholar 

  • Strick PL, Sterling P (1974) Synaptic termination of afferents from the ventrolateral nucleus of the thalamus in the cat motor cortex. A light and electron microscope study. J Comp Neurol 153:77–106

    PubMed  Google Scholar 

  • Ulinski PS (1984) Thalamic projections to the somatosensory cortex of the echidna, Tachyglossus aculeatus. J Comp Neurol 229:153–170

    PubMed  Google Scholar 

  • Valverde F (1986) Intrinsic neocortical organization: some comparative aspects. Neuroscience 18:1–23

    Article  PubMed  Google Scholar 

  • Valverde F, Facal-Valverde MV (1986) Neocortical layers I and II of the hedgehog (Erinaceus europaeus). I. Intrinsic organization. Anat Embryol 173:413–430

    Article  PubMed  Google Scholar 

  • Vanegas H, Holländer H, Distel H (1978) Early stages of uptake and transport of horseradish peroxidase by cortical structures, and its use for the study of local neurons and their processes. J Comp Neurol 177:193–212

    PubMed  Google Scholar 

  • Welker W, Lende RA (1980) Thalamocortical relationships in echidna (Tachyglossus aculeatus). In: Ebbesson SOE (ed) Comparative neurology of the telencephalon, Plenum Press, New York London, pp 449–481

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valverde, F., de Carlos, J.A., López-Mascaraque, L. et al. Neocortical layers I and II of the hedgehog (Erinaceus europaeus). Anat Embryol 175, 167–179 (1986). https://doi.org/10.1007/BF00389593

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00389593

Key words

Navigation