Skip to main content
Log in

Zum Stoffwechsel der Stärke

I. Die Umwandlung von Saccharose in Stärke in den Kotyledonen von Vicia faba

The metabolism of starch

I. The conversion of sucrose into starch in the cotyledons of vicia faba

  • Published:
Planta Aims and scope Submit manuscript

Summary

The determination of the activities of the enzymes which could be involved in sucrose-starch conversion showed that the first step of this transfer is performed by the sucrose-synthetase. In this reaction UDPG and almost no ADPG is formed. However, under the given conditions the concentration of UDPG is low, and with the weak activity of the starch synthetase present no starch synthesis takes place.

In a further step Glu-1-P is formed from UDPG, a reaction catalysed by the UDPG-pyrophosphorylase. Glu-1-P can also be furnished from the fructose liberated in the first step. In the immature cotyledons of Vicia faba there is sufficient fructokinase, phosphoglucose isomerase and phosphoglucomutase for these transformations. Most of starch synthesis proceeds catalysed by the electrophoretically slower migrating phosphorylase which can be adsorbed on starch granules. The fact that phosphorylase could only solubilize the radioactivity incorporated from Glu-1-P-C14 (due to phosphorylase) and not the one from ADPG-C14 (due to synthetase) shows that the two pathways are different. This sucrose-starch conversion is controlled by the concentration of glucose, glu-1-P, glu-6-P and fru-1,6-diP, which inhibit the formation of UDPG from sucrose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Avigad, G.: Sucrose-uridine diphosphate glucosyltransferase from Jerusalem artichoke tubers. J. biol. Chem. 239, 3613–3618 (1964).

    Google Scholar 

  • Badenhuizen, N. P.: Chemistry and biology of the starch granule. In: Protoplasmologia 11, B 2 b, S. 47 Wien: Springer 1958.

    Google Scholar 

  • —: Formation and distribution of amylose and amylopectin in the starch granule. Nature (Lond.) 197, 464–467 (1963).

    Google Scholar 

  • Cardini, C. E., and E. Recondo: Specificity of nucleoside diphosphate sugars in sucrose biosynthesis. Plant Cell Physiol. 3, 313–318 (1962).

    Google Scholar 

  • Chandorkar, K. R., and N. P. Badenhuizen: How meaningful are determinations of glucosyltransferase activities in starch-enzyme complexes? Stärke 18, 91–95 (1966).

    Google Scholar 

  • Espada, J.: Enzymic synthesis of adenosine diphosphate glucose from glucose-1-phosphate and adenosine triphosphate. J. biol. Chem. 237, 3577–3581 (1962).

    Google Scholar 

  • Fekete, M. A. R. de: Interaction of amyloplasts with enzymes. 1. Phosphorylase adsorption on amyloplasts in Vicia faba. Arch. Biochem. 116, 368–374 (1966).

    Google Scholar 

  • —: Die Rolle der Phosphorylase im Stoffwechsel der Stätrke in den Plastiden. Planta (Berl.) 79, 208–221 (1968).

    Google Scholar 

  • —, and C. E. Cardini: Mechanism of glucose transfer from sucrose into the starch granule of sweet corn. Arch. Biochem. 104, 173–184 (1964).

    Google Scholar 

  • —, H. Ziegler u. R. Wolf: Enzyme des Kohlenhydratstoffwechsels in Nektarien. Planta (Berl.) 75, 125–138 (1967).

    Google Scholar 

  • Frydman, R. B., and C. E. Cardini: Studies on the biosynthesis of starch. II. Some properties of the adenosine diphosphate glucose: starch glucosyltransferase bound to the starch granula. J. biol. Chem. 242, 312–317 (1967).

    Google Scholar 

  • Gafin, J. E., and N. P. Badenhuizen: Studies in radioactive starch. S. Afr. J. Sci. 55, 73–77 (1959).

    Google Scholar 

  • Ghosh, H. P., and J. Preiss: The biosynthesis of starch in spinach chloroplasts. J. biol. Chem. 240, PC 960-PC 962 (1965).

    Google Scholar 

  • —: Adenosine diphosphate glucose pyrophosphorylase. A regulatory enzyme in the biosynthesis of starch in spinach leaf chloroplasts. J. biol. Chem. 241, 4491–4504 (1966).

    Google Scholar 

  • Ginsburg, V.: Purification of uridinediphosphate glucose pyrophosphorylase from mung bean seedlings. J. biol. Chem. 232, 55–61 (1958).

    Google Scholar 

  • Kornberg, A.: In: Horizons in Biochemistry, p. 251–264 (M. Kasha and B. Pullman, eds.). New York: Academic Press 1962.

    Google Scholar 

  • Lavintman, N., and C. E. Cardini: Studies on ADP-D-glucose: α-1,4-glucan α-4-glucosyltransferase from tubers of Jerusalem artichoke. Plant Cell Physiol. 9, 578–592 (1968).

    Google Scholar 

  • Leloir, L. F., M. A. R. de Fekete, and C. E. Cardini: Starch and oligosaccharide synthesis from uridine diphosphate glucose. J. biol. Chem. 236, 636–641 (1961).

    Google Scholar 

  • Marrè, E., M. P. Cornaggia, and R. Bianchetti: The effects of sugars on the development of hexose phosphorylating enzymes in the castor bean cotyledons. Phytochemistry 7, 1115–1123 (1968).

    Google Scholar 

  • Medina, A., and A. Sols: A specific tructokinase in peas. Biochim. biophys. Acta (Amst.) 19, 378–379 (1956).

    Google Scholar 

  • Milner, Y., and G. Avigad: Thymidine diphosphate nucleotides as substrates in the sucrose synthetase reaction. Nature (Lond.) 206, 825 (1965).

    Google Scholar 

  • Murata, T., T. Sugiyama, and T. Akazawa: Enzymic mechanism of starch synthesis in ripening rice grains. II. Adenosine diphosphate glucose pathway. Arch. Biochem. 107, 92–101 (1964).

    Google Scholar 

  • —, and T. Akazawa: Enzymic mechanism of starch synthesis in ripening rice grains. III. Mechanism of the sucrose-starch conversion. Arch. Biochem. 113, 34–44 (1966).

    Google Scholar 

  • Nelson, O. E., and C. Y. Tsai: Glucose transfer from adenosine diphosphate-glucose to starch in preparations of waxy seeds. Science 145, 1194–1195 (1964).

    Google Scholar 

  • Pedersen, T. A., M. Kirk, and J. A. Bassham: Light dark transients in levels of intermediate compounds during photosynthesis in air-adapted Chlorella. Physiol. Plantarum (Copenh.) 19, 219–231 (1966).

    Google Scholar 

  • Porter, H. K.: Synthesis of polysaccharides of higher plants. Ann. Rev. Plant Physiol. 13, 303–328 (1962).

    Google Scholar 

  • —, and L. H. May: Metabolism of radioactive sugars by tobacco leaf disks. J. exp. Bot. 6, 43–63 (1955).

    Google Scholar 

  • —, R. V. Martin, and I. F. Bird: Synthesis and dissolution of starch labeled with C14 in tobacco leaf tissue. J. exp. Bot. 10, 264–276 (1959).

    Google Scholar 

  • Saltman, P.: Hexokinase in higher plants. J. biol. Chem. 200, 145–154 (1953).

    Google Scholar 

  • Slabnik, E., R. B. Frydman, and C. E. Cardini: Some properties of potato tuber UDPG: d-fructose-2-glucosyltransferase (E.C.2.4.1.13) and UDPG-d-fructose-6-phosphate-2-glucosyltransferase (E.C.2.4.1.13). Plant Physiol. 43, 1063–1068 (1968).

    Google Scholar 

  • Strominger, J. L., E. S. Maxwell, and H. M. Kalckar: Determination of UDPG and UTP by means of UDPG dehydrogenase. In: Methods in enzymology, vol. 3, p. 974–977 (S. P. Colowick and N. O. Kaplan, eds.). New York: Academic Press 1957.

    Google Scholar 

  • Turner, D. H., and J. F. Turner: Physiology of pea frujts. III. Changes in starch and starch phosphorylase in the developing seed. Aust. J. biol. Sci. 10, 302–309 (1957).

    Google Scholar 

  • — and J. B. Lee: Physiology of pea fruits. IV. Changes in sugars in the developing seed. Aust. J. biol. Sci. 10, 407–413 (1957).

    Google Scholar 

  • Viswanathan, P. N., and P. S. Krishnan: Metabolic activity of starch granules from the tapioca plant: II-Functional activity of starch granules from tuber. Indian J. Biochem. 2, 69–72 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Fekete, M.A.R. Zum Stoffwechsel der Stärke. Planta 87, 311–323 (1969). https://doi.org/10.1007/BF00388316

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00388316

Navigation