Skip to main content
Log in

Organization of the chloroplast genome in the red alga Porphyra yezoensis

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

A comprehensive assessment of the origin and evolution of plastids will require more information on the nature of plastid genomes from non-green algae. I have constructed a physical map of the chloroplast genome from the red alga Porphyra yezoensis. The 185 kb circular genome contains ribosomal RNA encoding inverted repeats (6.6 kb), and is divided into small and large singlecopy regions of approxiamtely 16 kb and 156 kb respectively. The Porphyra genome contains several genes not found in higher plant chloroplasts. Genes encoding the pigmented, light-harvesting phycobiliproteins are organized relatively close to one another on the genome, and represent components of a multi-gene family. the phycocyanin biliprotein genes (ppcBA) map in two single-copy regions, suggesting either duplicated genes or a transsplicing mechanism. In contrast to higher plants, the tufA and rbcS genes are chloroplast-encoded in Porphyra, and rbcS is clustered with the rbcL gene, suggesting an operon type of arrangement. The Porphyra chloroplast genome is distinctive, also, in that part of it has sequence homology to plasmid-like DNA molecules which co-isolate with the chloroplast DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akazawa T, Takabe T, Kobayashi H (1984) TIBS 9:380–383

    Google Scholar 

  • Baldauf SL, Palmer JD (1990) Nature 344:262–265

    Google Scholar 

  • Boczar BA, Delaney T, Cattolico RA (1989) Proc Natl Acad Sci USA 86:4996–4999

    Google Scholar 

  • Bryant DA, DeLorimer R, Lambert DH, Dubbs JM, Stirewalt VL, E Stevens Jr S, Porter RD, Tam J, Jay E (1985) Proc Natl Acad Sci USA 82:3242–3246

    Google Scholar 

  • Cavalier-Smith T (1982) Biol J Linn Soc 17:289–306

    Google Scholar 

  • Cavalier-Smith T (1987) The simultaneous symbiotic origin of mitochondria, chloroplasts and microbodies. Ann NY Acad Sci 503:55–71

    Google Scholar 

  • Conley PB, Lemaux PG, Lomax TL, Grossmann A (1986) Proc Natl Acad Sci USA 83:3924–3928

    Google Scholar 

  • Conley PB, Lemaux PG, Grossman AR (1988) J Mol Biol 199:447–465

    Google Scholar 

  • Delaney TP (1989) PhD Dissertation, Univ of Washington, USA

  • Douglas SE, Durnford DG (1989) Plant Mol Biol 13:13–20

    Google Scholar 

  • Ebert C, Tymms MJ, Schweiger HG (1985) Mol Gen Genet 200:187–192

    Google Scholar 

  • Egelhoff T, Grossman A (1983) Proc Natl Acad Sci USA 80:3339–3343

    Google Scholar 

  • Feinberg AP, Vogelstein B (1983) Anal Biochem 132:6–13

    Google Scholar 

  • Gibbs SP (1981) Int Rev Cytol 72:49–99

    Google Scholar 

  • Goff LJ, Coleman AW (1988) J Phycol 24:357–368

    Google Scholar 

  • Gray MW, Doolittle WF (1982) Microbiol Reviews 46:1–42

    Google Scholar 

  • Guillard RRL, Ryther J (1962) Can J Microbiol 8:229–239

    Google Scholar 

  • Heizmann P, Ravel-Chapuis P, Nigon V (1982) Curr Genet 6:119–122

    Google Scholar 

  • Kalla SR, Lind LK, Lidholm J, Gustafsson P (1988) J Bacteriol 170:2961–2970

    Google Scholar 

  • Lemaux PG, Grossman AR (1984) Proc Natl Acad Sci USA 81:4100–4104

    Google Scholar 

  • Li N, Cattolico RA (1987) Mol Gen Genet 209:343–351

    Google Scholar 

  • Lomax TL, Conley PB, Schilling J, Grossman A (1987) J Bacteriol 169:2675–2684

    Google Scholar 

  • Ludwig M, Gibbs SP (1989) J Cell Biol 108:875–884

    Google Scholar 

  • Marsh JL, Erfle M, Wykes E (1984) Gene 32:481–485

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrock J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Palmer JD (1985a) Evolution of chloroplast and mitochondrial DNA in plants and algae. In: R.J. MacIntyre (ed) Molecular Evolutionary Genetics. Plenum Press, New York, pp. 131–240

    Google Scholar 

  • Palmer JD (1985b) Annu Rev Genet 19:325–354

    Google Scholar 

  • Palmer JD (1986a) Chloroplast DNA and phylogenetic relationships. In: K.D. Dutta (ed) DNA Systematics, Vol II: Plants. CRC Press Inc., Florida, pp 63–80

    Google Scholar 

  • Palmer JD (1986b) Methods Enzymol 118:167–187

    Google Scholar 

  • Rochaix JD, Dron M, Rahire M, Malnoe P (1984) Plant Mol Biol 3:363–370

    Google Scholar 

  • Steinmuller K, Kaling M, Zetsche K (1983) Planta 159:308–313

    Google Scholar 

  • Turmel M, Bellamare G, Lee R, Lemieux C (1986) Plant Mol Biol 6:313–319

    Google Scholar 

  • Valentin K, Zetsche K (1989) Curr Genet 16:203–209

    Google Scholar 

  • Wasmann CC, Loeffelhardt W, Bohnert HJ (1987) Cyanelles: organization and molecular biology. In: P. Fay and C. Van Baalen (eds.). The Cyanobacteria. Elsevier Science Publishers, pp 303–324

  • Whatley JM (1981) Annu NY Acad Sci 361:154–165

    Google Scholar 

  • Whatley JM, Whatley FR (1981) New Phytol 87:233–247

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Esser

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shivji, M.S. Organization of the chloroplast genome in the red alga Porphyra yezoensis . Curr Genet 19, 49–54 (1991). https://doi.org/10.1007/BF00362087

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00362087

Key words

Navigation