Skip to main content
Log in

Effects of ammonia on survival and osmoregulation of various development stages of the shrimp Penaeus japonicus

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

In Penaeus japonicus, the tolerance to ammonia increased with the development from nauplius to late juvenile. The 48-h LC50 of ammonia in nauplii (III–V), 96-h LC50 in zoeae (I–III), mysis (I–III), post-larvae (PL1) and late juveniles (10.4±1.1 g) were respectively 5.0, 6.1 to 8.1, 9.4 to 10.9, 15.5 and 52.7 mg Nl-1 (0.5, 0.6 to 0.7, 0.9, 1.3 and 3.1 mg NH3−Nl-1). In a chronic experiment (20 d), the LC50 in post-larvae (PL1) was 19.1 (1.4) at 96 h and 16.2 mg Nl-1 (1.3 mg NH3−Nl-1) at 480 h. Osmoregulatory capacity (OC) was calculated as the osmotic gradient between the hemolymph and the external medium at given salinities. The effects of ammonia on OC, Na+ and Cl- regulation and gill Na+−K+ ATPase activity in late juveniles were examined in fullstrength seawater, SW (1050 mosm kg-1, 36‰ S) and in dilute SW (450 mosm kg-1, 15%.), after 48 or 96 h exposure to various concentrations of ammonia. Ambient ammonia disrupted both hypo- and hyper-osmoregulation; decreased OC resulted from impaired Na+ and Cl- regulation. Gill Na+−K+ ATPase activity increased in SW and was not affected in dilute SW. The decrease of OC was ammonia-dose-dependent. The threshold ammonia concentrations affecting hypo-OC and hyper-OC were, respectively, 16 (1.3) and 32 mg Nl-1 (2.3 NH3−Nl-1) for a 48 h exposure; these concentrations were lower than the 48-h LC50 value, 65.3 mg Nl-1 (3.5 NH3−Nl-1). The time course of exposure to sublethal ammonia (48 mg Nl-1) demonstrated that the effect on osmoregulation was time-dependent. This effect was also temporary, and the exposed shrimps recovered control OC values after removal of excessive ambient ammonia. The possibility of using OC as an indicator of physiological condition in osmoregulating crustaceans and the acting mode of ammonia on osmotic and ionic regulation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alasbaster, J. S., Lloyd, R. (eds.) (1982). Water quality criteria for freshwater fish. Butterworths. London

    Google Scholar 

  • Allan, G. L., Maguire, G. B., Hopkins, S. J. (1990). Acute and chronic toxicity of ammonia to juvenile Metapenaeus macleayi and Penaeus monodon and the influence of low dissolved-oxygen levels. Aquaculture, Amsterdam 91: 265–280

    Google Scholar 

  • Aminot, A. (1983). Dosage de l'azote ammoniacal. In: Aminot, A., Chaussepied, M. (eds.). Manuel des analyses chimiques en milieu marin. Centre National pour l'Exploitation des Océans, Paris, p. 107–118

    Google Scholar 

  • Armstrong, D. A., Buchanan, D. V., Mallon, M. H., Caldwell, R: S., Millemann, R. E. (1976). Toxicity of the insecticide methoxychlor to the Dungeness crab Cancer magister. Mar. Biol. 38: 239–252

    Google Scholar 

  • Armstrong, D. A., Chippendale, D., Knight, A. W., Colt, J. E. (1978). Interaction of ionized and unionized ammonia on shortterm survival and growth of prawn larvae, Macrobrachium rosenbergii. Biol. Bull. mar. biol. Lab., Woods Hole 154: 15–31

    Google Scholar 

  • Bourguet, J.-P., Exbrayat, J.-M. (1976) A propos de la régulation ionigue du sodium et du chlore dans l'hémolymphe de Panoeus japonicus (Bate). C. r. hebd Seanc. Acad. Sci., Paris 283 (D): 59–61

    Google Scholar 

  • Caldwell, R. S. (1974). Osmotic and ionic regulation in decapod Crustacea exposed to methoxychlor. In: Vernberg, F. J., Vernberg, W. B. (eds.) Pollution and physiology of marine organisms. Academic Press, New York, p. 197–223

    Google Scholar 

  • Cameron, J. N. (1986). Responses to reversed NH3 and NH +4 gradients in a teleost (Ictalurus punctatus), an elasmobranch (Raja erinacea), and a crustacean (Callinectes sapidus): evidence for NH +4 /H+ exchange in the teleost and the elasmobranch. J. exp. Zool. 239: 183–195

    Google Scholar 

  • Castille, F. L., Jr., Lawrence, A. L. (1981). A comparison of the capabilities of juvenile and adulte Penaeus setiferus and Penaeus stylirostris to regulate the osmotic, sodium, and chloride concentrations in the hemolymph. Comp. Biochem. Physiol. 68(A): 677–680

    Google Scholar 

  • Charmantier, G. (1987). L'osmorégulation chez les crevettes penaeidae (Crustacea, Decapoda). Océanis 13 (Fasc. 2): 179–196

    Google Scholar 

  • Charmantier, G., Bouaricha, N., Charmantier-Daures, M., Thuet, P., Trilles, J.-P. (1989). Salinity tolerance and osmoregulatory capacity as indicator of the physiological state of penaeid shrimps. Spec. Publs eur. Aquat. cult. Soc. 10: 65–66

    Google Scholar 

  • Charmantier, G., Trilles, J.-P. (1973). La pression osmotique de l'hémolymphe de Sphaeroma serratum (crustacé, isopode): variation en fonction de la salinité et de la sénescence. C. r. hebd. Séanc. Acad. Sci., Paris 276 (D): 69–72

    Google Scholar 

  • Charmantier-Daures, M., Thuet, P., Charmantier, G., Trilles, J.-P. (1988). Tolérance à la salinité et osmorégulation chez les postlarves de Penaeus japonicus et P. chinensis. Effet de la température. Aquat. living Resour. (Nantes) 1: 267–276

    Google Scholar 

  • Chen, J. C., Lin, P. C., Lei, S. C. (1990). Toxicities of ammonia and nitrite to Penaeus monodon adolescents. Aquaculture, Amsterdam 89: 127–137

    Google Scholar 

  • Chin, T. S., Chen, J. C. (1987). Acute toxicity of ammonia to larvae of the tiger prawn, Penaeus monodon. Aquaculture, Amsterdam 66: 247–253

    Google Scholar 

  • Colt, J. E., Armstrong, D. A. (1981). Nitrogen toxicity to crustaceans, fish and mollucs. In: Allen, L. J., Kinney, E. C. (eds.) Proceedings of the Bio-Engineering Symposium for Fish Culture. American Fisheries Society, Bethesda, p. 34–47

    Google Scholar 

  • Drach, P., Tchernigovtzeff, C. (1967). Sur la méthode de détermination des states d'intermue et son application générale aux crustacés. Vie Milieu 18(A): 595–610

    Google Scholar 

  • Evans, D. H. (1977). Further evidence for Na+/NH +4 exchange in marine teleost fish. J. exp. Biol. 70: 213–220

    Google Scholar 

  • Evans, D. H., Cameron, J. N. (1986). Gill ammonia transport. J. exp. Zool. 239: 17–23

    Google Scholar 

  • Finney, D. J. (1962). Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press, London

    Google Scholar 

  • Franson, M. A. H. (ed.). (1981) Standard methods for the examination of water and waste-water. 15th edn. American Public Health Association, Washington, D.C.

    Google Scholar 

  • Hubert, J. J. (1980). Bioassay. Kendall Hunt Publishing Co., Toronto, Ontario

    Google Scholar 

  • Hudinaga, M. (1942). Reproduction, development and rearing of Penaeus japonicus Bate. Japan. J. Zool. 10: 305–353

    Google Scholar 

  • Inman, C. B. E., Lockwood, A. P. M. (1977). Some effects of methylmercury and lindane on sodium regulation in the amphipod Gammarus duebeni during changes in the salinity of its medium. Comp. Biochem. Physiol. 58(C): 67–75

    Google Scholar 

  • Ivanovici, A. M., Wiebe, W. J. (1981). Towards a working definition of “stress”: a review and critique. In: Barrett, G. W., Rosenberg, R. (eds.) Stress effects on natural ecosystems. Wiley-Interscience, Chichester, p. 13–27

    Google Scholar 

  • Iwata, J., Shigueno, K. (1980). Osmotic concentration of hemolymph in various growth stages of Penaeus japonicus. Bull. Jap. Soc. scient. Fish. 46: p. 1547

    Google Scholar 

  • Jayasankar, P., Muthu, M. S. (1983). Toxicity of ammonia to the larvae of Penaeus indicus H. Milne Edwards. Indian J. Fish. 30: 1–12

    Google Scholar 

  • Kinne, O. (1976). Cultivation of marine organisms: water quality management and technology. In: Kinne, O. (ed.) Marine ecology. Vol. III, Part 1. Cultivation. Wiley-Interscience, Chichester, p. 79–300

    Google Scholar 

  • Kinter, W. B., Merkens, L. W., Janicki, R. H., Guarino, A. M. (1972). Studies on the mechanism of toxicity of DDT and polychlorinated biphenyls (PCBs): disruption of osmoregulation in marine fish. Envir. Hlth Perspectives 1: 169–173

    Google Scholar 

  • Kormanik, G. A., Cameron, J. N. (1981). Ammonia excretion in animals that breath water: a review. Mar. Biol. Lett. 2: 11–23

    Google Scholar 

  • Lloyd, D., Orr, L. D. (1969). The diuretic response by rainbow trout to sub-lethal concentrations of ammonia. Wat. Res. 3: 335–344

    Google Scholar 

  • Lock, R. A. C., Cruijsen, P. M. J. M., Van Overbeeke, A. P. (1981). Effects of mercuric chloride and methylmercuric chloride on the osmoregulatory function of the gills in the rainbow trout, Salmo gairdneri Richardson. Comp. Biochem. Physiol. 68(C): 151–159

    Google Scholar 

  • Lucu, C., Devescovi, M., Siebers, D. (1989). Do amiloride and ouabain affect ammonia fluxes in perfused Carcinus gill epithelia? J. exp. Zool. 249: 1–5

    Google Scholar 

  • McLusky, D. S., Hagerman, L., Mitchell, P. (1982). Effect of salinity acclimation on osmoregulation in Crangon crangon and Praunus flexuosus. Ophelia 21: 89–100

    Google Scholar 

  • Neufeld, G. J., Pritchard, J. B. (1979). Osmoregulation and gill Na+−K+ ATPase in the rock crab, Cancer irroratus: response to DDT. Comp. Biochem. Physiol. 62(C): 165–172

    Google Scholar 

  • Parry, G. (1960). Excretion. In: Waterman, T. H. (ed.) The physiology of Crustacea. Vol. 1. Metabolism and growth. Academic Press, New York, p. 341–366

    Google Scholar 

  • Péqueux, A., Gilles, R., Marshall, W. S. (1988). NaCl transport in gills and related structures. In: Greger, R, (ed.) Advances in comparative and environmental physiology. Springer-Verlag, Berlin, p. 1–73

    Google Scholar 

  • Piper, J. M., Lowell, S. J. (1981). One-step molybdate method for rapid determination of inorganic phosphate in the presence of protein. Analyt. Biochem. 117: 70–75

    Google Scholar 

  • Potts, W. T. W., Parry, G. (1964). Osmotic and ionic regulation in animals. Pergamon Press, London

    Google Scholar 

  • Rainbow, P. S. (1990). Heavy metal levels in marine invertebrates. In: Furness, R. W., Rainbow, P. S. (eds.) Heavy metals in the marine environment. CRC Press, Boca Raton, Florida, p. 67–79

    Google Scholar 

  • Renfro, J. L., Schmidt-Nielsen, B., Miller, D., Benos, D., Allen, J. (1974). Methyl mercury and inorganic mercury: uptake, distribution and effect on osmoregulatory mechanisms in fishes. In: Vernberg, F. J., Vernberg, W. B. (eds.) Pollution and physiology of marine organisms. Academic Press, New York, p. 101–122

    Google Scholar 

  • Rorive, G., Gilles, R. (1979). Intracellular inorganic osmotic effectors. In: Gilles, R. (ed.) Mechanisms of osmoregulation in animals, maintenance of cell volume. John Wiley & Sons, New York, p. 83–110

    Google Scholar 

  • Smith, P. K., Krohn, R. I., Herman Son, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., Klenk, D. C. (1985). Measurement of protein using bicinchoninic acid. Analyt. Biochem. 150: 76–85

    Google Scholar 

  • Spaargaren, D. H. (1990). The effect of environmental ammonia concentrations on the ion-exchange of shore crabs, Carcinus maenas (L.). Comp. Biochem. Physiol. 97C (1): 87–91

    Google Scholar 

  • Spotte, S. (1979). Fish and invertebrate culture: water management in closed systems. John Wiley & Sons, New York

    Google Scholar 

  • Sprague, J. B. (1971). Measurement of pollutant toxicity to fish. III. Sublethal effects and “safe” concentration. Wat. Res. 5: 245–266

    Google Scholar 

  • Tarazona, J. V., Muñoz, M. J., Ortiz, J. A., Nuñez, M. O., Camargo, J. A. (1987). Fish mortality due to acute ammonia exposure. Aquacult. Fish. Mgmt 18: 167–172

    Google Scholar 

  • Towle, D. W. (1984). Regulatory functions of Na+−K+ ATPase in marine and estuarine animals. In: Péqueux, A., Gilles, R., Bolis, L. (eds.) Osmoregulation in estuarine and marine animals, Springer-Verlag, Berlin, p. 157–170

    Google Scholar 

  • Towle, D. W. (1990). Sodium transport systems in gills. In: Kinne, R. K. H. (ed.) Comparative physiology. Vol. VII. Comparative aspects of sodium cotrasport systems. Basel, Karger, p. 241–263

    Google Scholar 

  • Trussel, R. P. (1972). The percent unionized ammonia in aqueous solutions at different pH levels and temperature. J. Fish. Res. Bd Can. 29: 1505–1507

    Google Scholar 

  • Whitfield, M. (1978). The hydrolysis of ammonium ions in sea water — an experimental confirmation of predicted constants at one atmosphere pressure. J. mar. biol. Ass. U.K. 58: 781–787

    Google Scholar 

  • Wickins, J. F. (1976). The tolerance of warm-water prawns to recirculated water. Aquaculture, Amsterdam 9: 19–37

    Google Scholar 

  • Young-Lai, W. W., Charmantier-Daures, M., Charmantier, G. (1991). Effect of ammonia on survival and osmoregulation in different life stages of the lobster Homarus americanus. Mar. Biol. 110: 293–300

    Google Scholar 

  • Zaugg, W. S. (1982). A simplified preparation for adenosine triphosphatase determination in gill tissue. Can. J. Fish. aquat. Sciences 39: 215–217

    Google Scholar 

  • Zitko, V. (1982). Letcur, the lethality curve program. Tech. Rep. Fish. aquat. Sciences Can. 1134: 1–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Commnicated by J. M. Pérès, Marseille

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, HP., Thuet, P., Trilles, J.P. et al. Effects of ammonia on survival and osmoregulation of various development stages of the shrimp Penaeus japonicus . Marine Biology 117, 591–598 (1993). https://doi.org/10.1007/BF00349770

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00349770

Keywords

Navigation