Skip to main content
Log in

A temporally regulated promoter from Bacillus subtilis is transcribed only by an RNA polymerase with a 37,000 dalton sigma factor

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

A 1,250 base pair Bacillus subtilis chromosomal HindIII restriction fragment (S fragment) has been cloned into the B. subtilis expression-probe plasmid pGR71. The S fragment induces the expression of the pGR71 chloramphenicol resistance gene shortly after the initiation of sporulation. The transcriptional promoter responsible for the expression of this temporally regulated genetic element has been identified and mapped in vitro. This promoter is recognized exclusively by the minor B. subtilis RNA polymerase that contains the 37,000 dalton sigma factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews RE, Kanada K, Bulla LA Jr (1981) In vitro translation of the entomocidal toxin of B. thuringensis. In: Ganesan AT, Chang S, Hoch JA (eds) Molecular cloning and gene regulation in Bacilli. Academic Press, Inc, New York, pp 121–130

    Google Scholar 

  • Bolivar F, Rodriguez RL, Betlach MC, Boyer HW (1977) Construction and characterization of new cloning vehicles. I. Ampicillin-resistant derivatives of the plasmid pMB9. Gene 2:75–93

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Google Scholar 

  • Clark VL, Bernlohr RW (1972) Catabolite repression and the enzymes regulating cyclic adenosine 3′,5′-monoposphate and cyclic guanosine 3′,5′-monophosphate levels in Bacillus licheniformis. In: Halvorson HO, Hanson R, Campbell LL (eds) Spores V. American Society for Microbiol, Washington, DC, pp 167–173

    Google Scholar 

  • Cox DP, Hanson RS (1968) Catabolite repression of aconitate hydratase in Bacillus subtilis. Biochim Biophys Acta 158:36–44

    Google Scholar 

  • Danna KJ (1980) Determination of fragment order through partial digests and multiple enzyme digests. Methods Enzymol 65:449–467

    Google Scholar 

  • Dingman SS, Setlow P (1980) In vivo of and in vitro synthesis of the spore specific proteins A and C of Bacillus megaterium. J Biol Chem 255:8417–8423

    Google Scholar 

  • Doi RH (1982a) Multiple RNA polymerase holoenzymes exert transcriptional specificity in Bacillus subtilis. Arch Biochem Biophys 214:772–781

    Google Scholar 

  • Doi RH (1982b) RNA polymerase of Bacillus subtilis. In: Dubnau DA (ed) The molecular biology of the Bacilli, vol I, Bacillus subtilis. Academic Press, Inc, New York, pp 72–106

    Google Scholar 

  • Dubnau DD (1982) Genetic transformation in Bacillus subtilis. In: Dubanu DD (ed) The molecular biology of the Bacilli, vol I, Bacillus subtilis. Academic Press, Inc, New York, pp 148–175

    Google Scholar 

  • Fukuda R, Doi RH (1977) Two polypeptides associated with ribonucleic acid polymerase core of Bacillus subtilis during sporulation. J Bacteriol 129:422–432

    Google Scholar 

  • Gilman MZ, Wiggs JL, Chamberlin MJ (1981) Nucleotide sequences of two Bacillus subtilis promoters sued by Bacillus subtilis sigma-28 RNA polymerase. Nucl Acid Res 9:5991–6000

    Google Scholar 

  • Goldfarb DS, Doi RH, Rodriguez RL (1981) Expression of Tn-9-derived chloramphenicol resistance in Bacillus subtilis. Nature 293:309–311

    Google Scholar 

  • Goldfarb DS, Rodriguez RL, Doi RH (1982) Translational block to expression of the Escherichia coli Tn-9-derive chloramphenicol-resistance gene in Bacillus subtilis. Proc Natl Acad Sci USA 79:5886–5890

    Google Scholar 

  • Gryczan TJ, Contente S, Dubnau D (1978) Characterization of Staphylococcus aureus plasmids introduced by transformation into Bacillus subtilis. J Bacteriol 134:318–329

    Google Scholar 

  • Hageman JH, Carlton BC (1973) Effects of mutational loss of specific intracellular protreases on the sporulation of Bacillus subtilis. J Bacteriol 114:612–617

    Google Scholar 

  • Haldenwang WG, Losick R (1980) Novel RNA polymerase sigma factor from Bacillus subtilis. Proc Natl Acad Sci USA 77:7000–7004

    Google Scholar 

  • Haldenwang WG, Lang N, Losick R (1981) A sporulation-induced sigma-like regulatory protein from Bacillus subtilis. Cell 23:615–624

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Google Scholar 

  • Langridge J, Langridge P, Bergquist PL (1980) Extraction of nucleic acids from agarose gels. Anal Biochem 103:264–271

    Google Scholar 

  • Lee G, Pero J (1981) Conserved nucleotide sequences in temporally controlled bacteriophage promoters. J Mol Biol 15:247–265

    Google Scholar 

  • Losick R (1982) Sporulation genes and their regulation. In: Dubnau DA (ed) The molecular biology of the Bacilli, vol I, Bacillus subtilis. Academic Press, Inc, New York, pp 179–199

    Google Scholar 

  • Losick R, Pero J (1981) Cascades of sigma factors. Cell 15:582–584

    Google Scholar 

  • Maniatis T, Efstradiadis A (1980) Fractionation of low molecular weight DNA or RNA in polyacrylamide gels containing 98% formamide or 7 M urea. Methods Enzymol 65:299–305

    Google Scholar 

  • Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218

    Google Scholar 

  • Moran CP Jr, Lang N, Losick R (1981a) Nucleotide sequence of a Bacillus subtilis promoter recognized by Bacillus subtilis RNA polymerase containing 325-1. Nucl Acid Res 9:5979–5990

    Google Scholar 

  • Moran CP Jr, Lang N, Banner CDB, Haldenwang WG, Losick R (1981b) Promoter for a developmentally regulated gene in Bacillus subtilis. Cell 25:783–791

    Google Scholar 

  • Murray CL, Rabinowitz (1982) Nucleotide sequences of transcription and translation initiation regions in Bacillus phage ϕ29 early genes. J Biol Chem 257:1053–1062

    Google Scholar 

  • Piggot PJ, Coote JG (1976) Genetic aspects of bacterial endospore formation. Bacteriol Rev 40:908–962

    Google Scholar 

  • Priest FG (1977) Extracellular enzyme synthesis in the genus Bacillus. Bacteriol Rev 41:711–753

    Google Scholar 

  • Shaw WV (1975) Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria. Methods Enzymol 43:737–755

    Google Scholar 

  • Shorenstein RG, Losick R (1973) Purification and properties of the sigma subunit of ribonucleic acid polymerase from vegetative Bacillus subtilis. J Biol Chem 248:6163–6169

    Google Scholar 

  • Soberon X, Covarrubias L, Bolivar F (1980) Construction and characterization of new cloning vehicles. IV. Deletion derivatives of pBR322 and pBR325. Gene 9:287–305

    Google Scholar 

  • Sterlini JM, Mandelstam J (1969) Commitment to sporulation in Bacillus subtilis and its relationship to development of actinomycin resistance. Biochem J 113:29–37

    Google Scholar 

  • Sussman R, Jacob F (1962) Sur un système de repression thermosensible chez le bactériophage ψ d'Escherichia coli. CR Acad Sci (Paris) 254:1517–1519

    Google Scholar 

  • Tait RC, Rodriguez RL, West RW Jr (1980) The rapid purification of T4 DNA ligase from a ψ T4 lig lysogen. J Biol Chem 813–815

  • Talkington C, Pero J (1979) Distinctive nucleotide sequence of promoters recognized by RNA polymerase containing a phagecoded “σ-like” protein. Proc Natl Acad Sci USA 76:5465–5469

    Google Scholar 

  • Warren SC (1968) Sporulation in Bacillus subtilis. Biochem J 109:811–818

    Google Scholar 

  • Wiggs JL, Gilman MA, Chamberlin MJ (1981) Heterogeneity of RNA polymerase in Bacillus subtilis: Evidence for an additional σ factor in vegetative cells. Proc Natl Acad Sci USA 78:2762–2776

    Google Scholar 

  • Wong S-L, Doi RH (1982) Peptide mapping of Bacillus subtilis RNA polymerase σ factors and core-associated polypeptides. J Biol Chem 257:11932–11936

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. O'Donovan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldfarb, D.S., Wong, SL., Kudo, T. et al. A temporally regulated promoter from Bacillus subtilis is transcribed only by an RNA polymerase with a 37,000 dalton sigma factor. Mol Gen Genet 191, 319–325 (1983). https://doi.org/10.1007/BF00334833

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00334833

Keywords

Navigation