Skip to main content
Log in

Termination of transcription of ribosomal RNA genes of mung bean occurs within a 175 bp repetitive element of the spacer region

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

In mung bean (Vigna radiata, formerly Phaseolus aureus) one length heterogeneity in the intergenic spacer (IGS) of the ribosomal DNA (rDNA) is due to a variable number of 175-bp subrepeats. This spacer region downstream of the 25S rRNA coding region was characterized by seuquencing the 2.4 kb EcoRI/HindIII fragment of a 10.5 kb mung bean rDNA repeat. Within the 175-bp repetitive elements a sequence was detected showing strong similarity to the T2/T3-box (GACTTGC) found in Xenopus rDNA and involved in termination and enhancing transcription. In mung bean this sequence partly forms the stem of a possible stem-loop structure at the 3′ end of each subrepeat. Nuclease mapping of transcription termination sites (TTS) results in two signals, 65 bp and 315 bp downstream of the 3′ end of the 25S rRNA coding region. The longer transcript terminates 20 bp downstream of the stem-loop structure at the end of the first 175-bp subrepeat. A spacer model is proposed which allows “readthrough enhancement”. No cross-hybridization was observed between the 180-bp subrepeats in pea (Pisum sativum) rDNA and the mung bean 175-bp subrepeat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appels R, Moran LB, Gustafson JP (1986) The structure of DNA from the rye (Secale cereale) NOR R1 locus and its behaviour in wheat backgrounds. Can J Genet Cytol 28:673–685

    Google Scholar 

  • Bonven BJ, Gocke E, Westergaard O (1987) A high affinity topoisomerase I binding sequence is clustered at DNase I hypersensitive sites in Tetrahymena r chromatin. Cell 41:541–555

    Google Scholar 

  • Courvey AJ, Wang JC (1988) Influence of DNA sequence and supercoiling on the process of cruciform formation. J Mol Biol 202:35–43

    Google Scholar 

  • Delcasso-Tremousaygue D, Grellet F, Panabieres F, Ananiev ED, Delseny M (1988) Structural and transcriptional characterization of the external spacer of a ribosomal RNA nuclear gene from a higher plant. Eur J Biochem 172:767–776

    Google Scholar 

  • Deltour R, Mosen H (1987) Proposals for the macromolecular organization of the higher plant nucleolonema. Biol Cell 60:75–86

    Google Scholar 

  • Furlong JC, Forbes J, Robertson M, Maden BEH (1983) The external transcribed spacer and precoding region of Xenopus borealis rDNA: comparison with the corresponding region of Xenopus laevis rDNA. Nucleic Acids Res 11:8183–8196

    Google Scholar 

  • Futcher B (1988) Supercoiling and transcription, or vice versa? Trends Genet 4:271–272

    Google Scholar 

  • Ganal M, Torres R, Hemleben V (1988) Complex structure of the ribosomal DNA spacer of Cucumis sativus (cucumber). Mol Gen Genet 212:548–554

    Google Scholar 

  • Gerbi S (1986) Evolution of ribosomal DNA. In: MacIntyre R (ed) Molecular evolutionary genetics. Plenum, New York, p 419

    Google Scholar 

  • Gerstner J, Schiebel K, von Waldburg G, Hemleben V (1988) Complex organization of the length heterogenous 5′ external spacer of mung bean ribosomal DNA. Genome 30:723–733

    Google Scholar 

  • Grummt I, Maier U, Öhrlein A, Hassouna N, Bachellerie J (1985) Transcription of a mouse rDNA terminates downstream of the 3′ end of the 28S RNA and involves interaction of factors with repeated sequences in the 3′spacer. Cell 43:801–810

    Google Scholar 

  • Grummt I, Rosenbauer H, Niedermeyer H, Maier U, Öhrlein A (1986a) A repeated 18 bp sequence motif in the mouse rDNA spacer mediates binding of a nuclear factor and transcription termination. Cell 45:837–846

    Google Scholar 

  • Grummt I, Kuhn A, Bartsch I, Rosenbauer H (1986b) A transcription terminator located upstream of the mouse rDNA initation site affects rRNA synthesis. Cell 47:901–911

    Google Scholar 

  • Hemleben V, Ganal M, Gerstner J, Schiebel K, Torres RA (1988) Organization and length heterogeneity of plant ribosomal RNA genes. In: Kahl G (ed) Architecture of eukaryotic genes. VCH, Weinheim, p 371

    Google Scholar 

  • Henderson S, Sollner-Webb B (1986) A transcriptional terminator is a novel element of the promotor of the mouse ribosomal RNA gene. Cell 47:891–900

    Google Scholar 

  • Jordan G (1987) At the heart of the nucleolus. Nature 329:489–490

    Google Scholar 

  • Jorgensen RA, Cuellar RE, Thompson WF, Kavanagh TA (1987) Structure and variation in ribosomal RNA genes of pea. Plant Mol Biol 8:3–12

    Google Scholar 

  • Kato A, Yakura K, Tanifuji S (1985) Repeated DNA sequences found in the large spacer of Vicia faba rDNA. Biochim Biophys Acta 825:411–415

    Google Scholar 

  • Kempers-Veenstra AE, Oliemans J, Offenberg H, Dekker AF, Piper PW, Planta RJ, Klootwijk J (1986) 3′-end formation of transcripts from the yeast rRNA operon. EMBO J 5:2703–2710

    Google Scholar 

  • Labhart P, Reeder RH (1986) Characterization of three sites of RNA 3′end formation in the Xenopus ribosomal gene spacer. Cell 45:431–443

    Google Scholar 

  • Lassner M, Dvorak J (1986) Preferential homogenization between adjacent and alternate subrepeats in wheat rDNA. Nucleic Acids Res 14:5499–5512

    Google Scholar 

  • Lassner M, Anderson O, Dvorak J (1987) Hypervariation associated with a 12-nucleotide direct repeat and inferences on intergenomic homogenization of ribosomal RNA gene spacers based on the DNA sequence of a clone from the wheat Nor-D3 locus. Genome 29:770–781

    Google Scholar 

  • Long E, Dawid I (1980) Repeated genes in eukaryotes. Annu Rev Biochem 49:727–764

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory. Cold Spring Harbor, NY

    Google Scholar 

  • Martini G, Flavell RB (1985) The control of nucleolus volume in wheat, a genetic study of three developmental stages. Heredity 54:111–149

    Google Scholar 

  • Martini G, O'Dell M, Flavell RB (1982) Partial inactivation of wheat nucleolus organisers by the nucleolus organiser chromosomes from Aegilops umbellulata. Chromosoma 84:687–700

    Google Scholar 

  • Mitchelson K, Moss T (1987) The enhancement of ribosomal transcription by the recycling of RNA polymerase I. Nucleic Acids Res 15:9577–9596

    Google Scholar 

  • Moss T (1983) A transcriptional function for the repetitive ribosomal spacer in Xenopus laevis. Nature 302:223–228

    Google Scholar 

  • Muller M, Pfund W, Metha V, Trask D (1985) Eucaryotic type I topoisomerase is enriched in the nucleolus and catalytically active on ribosomal DNA. EMBO J 4:1237–1243

    Google Scholar 

  • Murtif VL, Rae PMM (1985) In vivo transcription of rDNA spacers in Drosophila. Nucleic Acids Res 13:3221–3240

    Google Scholar 

  • Ness PJ, Koller T, Thoma F (1988) Topoisomerase I cleavage sites identified and mapped in the chromatin of Dictyostelium ribosomal RNA genes. J Mol Biol 200:127–130

    Google Scholar 

  • Polans NO, Weeden NF, Thompson WF (1986) Distribution, inheritance and linkage relationships of ribosomal DNA spacer length variants in pea. Theor Appl Genet 72:289–295

    Google Scholar 

  • Rogers SO, Bendich AJ (1987) Ribosomal RNA genes in plants: variability in copy number and in the intergenic spacer. Plant Mol Biol 9:509–520

    Google Scholar 

  • Rogers SO, Bendich AJ (1988) Recombination in Escherichia coli between cloned ribosomal RNA intergenic spacers from Vicia faba: A model for the generation of ribosomal RNA gene heterogeneity in plants. Plant Sci 55:27–31

    Google Scholar 

  • Rogers SO, Honda S, Bendich AJ (1986) Variation in the ribosomal RNA genes among individuals of Vicia faba. Plant Mol Biol 6:339–345

    Google Scholar 

  • Smith HC, Rothblum LI (1987) Ribosomal DNA sequences attached to the nuclear matrix. Biochem Genet 25:863–879

    Google Scholar 

  • Taira T, Kato A, Tanifuji S (1988) Difference between two major size classes of carrot rDNA repeating units is due to reiteration of sequences of about 460 bp in the large spacer. Mol Gen Genet 213:170–174

    Google Scholar 

  • Takaiwa F, Oono K, Iida Y, Sugiura M (1985) The complete sequence of rice 25S rRNA gene. Gene 37:225–259

    Google Scholar 

  • Tautz D, Dover GA (1986) Transcription of the tandem array of ribosomal DNA in Drosophila melanogaster does not terminate at any fixed point. EMBO J 5:1267–1273

    Google Scholar 

  • Toloczyki C, Feix G (1986) Occurrence of 9 homologous repeat units in the external spacer region of a nuclear maize rRNA gene unit. Nucleic Acids Res 14:4969–4985

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. G.Herrmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiebel, K., von Waldburg, G., Gerstner, J. et al. Termination of transcription of ribosomal RNA genes of mung bean occurs within a 175 bp repetitive element of the spacer region. Molec Gen Genet 218, 302–307 (1989). https://doi.org/10.1007/BF00331282

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00331282

Key words

Navigation